从医疗发票图片中提取数据的混合主动方法

Seokweon Jung, Kiroong Choe, Seokhyeon Park, Hyung-Kwon Ko, Youngtaek Kim, Jinwook Seo
{"title":"从医疗发票图片中提取数据的混合主动方法","authors":"Seokweon Jung, Kiroong Choe, Seokhyeon Park, Hyung-Kwon Ko, Youngtaek Kim, Jinwook Seo","doi":"10.1109/PacificVis52677.2021.00022","DOIUrl":null,"url":null,"abstract":"Extracting data from pictures of medical records is a common task in the insurance industry as the patients often send their medical invoices taken by smartphone cameras. However, the overall process is still challenging to be fully automated because of low image quality and variation of templates that exist in the status quo. In this paper, we propose a mixed-initiative pipeline for extracting data from pictures of medical invoices, where deep-learning-based automatic prediction models and task-specific heuristics work together under the mediation of a user. In the user study with 12 participants, we confirmed our mixed-initiative approach can supplement the drawbacks of a fully automated approach within an acceptable completion time. We further discuss the findings, limitations, and future works for designing a mixed-initiative system to extract data from pictures of a complicated table.","PeriodicalId":199565,"journal":{"name":"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mixed-Initiative Approach to Extract Data from Pictures of Medical Invoice\",\"authors\":\"Seokweon Jung, Kiroong Choe, Seokhyeon Park, Hyung-Kwon Ko, Youngtaek Kim, Jinwook Seo\",\"doi\":\"10.1109/PacificVis52677.2021.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extracting data from pictures of medical records is a common task in the insurance industry as the patients often send their medical invoices taken by smartphone cameras. However, the overall process is still challenging to be fully automated because of low image quality and variation of templates that exist in the status quo. In this paper, we propose a mixed-initiative pipeline for extracting data from pictures of medical invoices, where deep-learning-based automatic prediction models and task-specific heuristics work together under the mediation of a user. In the user study with 12 participants, we confirmed our mixed-initiative approach can supplement the drawbacks of a fully automated approach within an acceptable completion time. We further discuss the findings, limitations, and future works for designing a mixed-initiative system to extract data from pictures of a complicated table.\",\"PeriodicalId\":199565,\"journal\":{\"name\":\"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PacificVis52677.2021.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis52677.2021.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

从医疗记录图片中提取数据是保险行业的一项常见任务,因为患者经常发送用智能手机摄像头拍摄的医疗发票。然而,由于目前存在的图像质量低、模板多变等问题,整个过程要实现完全自动化仍然是一个挑战。在本文中,我们提出了一个用于从医疗发票图片中提取数据的混合主动管道,其中基于深度学习的自动预测模型和任务特定启发式在用户的中介下协同工作。在有12个参与者的用户研究中,我们证实了我们的混合主动方法可以在可接受的完成时间内补充完全自动化方法的缺点。我们进一步讨论了从复杂表格的图片中提取数据的混合主动系统的发现、局限性和未来的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mixed-Initiative Approach to Extract Data from Pictures of Medical Invoice
Extracting data from pictures of medical records is a common task in the insurance industry as the patients often send their medical invoices taken by smartphone cameras. However, the overall process is still challenging to be fully automated because of low image quality and variation of templates that exist in the status quo. In this paper, we propose a mixed-initiative pipeline for extracting data from pictures of medical invoices, where deep-learning-based automatic prediction models and task-specific heuristics work together under the mediation of a user. In the user study with 12 participants, we confirmed our mixed-initiative approach can supplement the drawbacks of a fully automated approach within an acceptable completion time. We further discuss the findings, limitations, and future works for designing a mixed-initiative system to extract data from pictures of a complicated table.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADVISor: Automatic Visualization Answer for Natural-Language Question on Tabular Data An Extension of Empirical Orthogonal Functions for the Analysis of Time-Dependent 2D Scalar Field Ensembles Know-What and Know-Who: Document Searching and Exploration using Topic-Based Two-Mode Networks Louvain-based Multi-level Graph Drawing A Visual Analytics Approach for the Diagnosis of Heterogeneous and Multidimensional Machine Maintenance Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1