基于微软Kinect深度图像的人体动作识别

Tong Liu, Yang Song, Yu Gu, A. Li
{"title":"基于微软Kinect深度图像的人体动作识别","authors":"Tong Liu, Yang Song, Yu Gu, A. Li","doi":"10.1109/GCIS.2013.38","DOIUrl":null,"url":null,"abstract":"Human action recognition is very important in human computer interaction. In this article, we present a new method of recognizing human actions by using Microsoft Kinect sensor, k-means clustering and Hidden Markov Models (HMMs). Kinect is able to generate human skeleton information from depth images, in addition, features representing specific body parts are generated from the skeleton information and are used for recording actions. Then k-means clustering assigns the features into clusters and HMMs analyze the relationship between these clusters. By doing this, we achieved action learning and recognition. According to our experimental results, the average accuracy was 91.4 %.","PeriodicalId":366262,"journal":{"name":"2013 Fourth Global Congress on Intelligent Systems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Human Action Recognition Based on Depth Images from Microsoft Kinect\",\"authors\":\"Tong Liu, Yang Song, Yu Gu, A. Li\",\"doi\":\"10.1109/GCIS.2013.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human action recognition is very important in human computer interaction. In this article, we present a new method of recognizing human actions by using Microsoft Kinect sensor, k-means clustering and Hidden Markov Models (HMMs). Kinect is able to generate human skeleton information from depth images, in addition, features representing specific body parts are generated from the skeleton information and are used for recording actions. Then k-means clustering assigns the features into clusters and HMMs analyze the relationship between these clusters. By doing this, we achieved action learning and recognition. According to our experimental results, the average accuracy was 91.4 %.\",\"PeriodicalId\":366262,\"journal\":{\"name\":\"2013 Fourth Global Congress on Intelligent Systems\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fourth Global Congress on Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCIS.2013.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth Global Congress on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCIS.2013.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

人的动作识别在人机交互中是非常重要的。在本文中,我们提出了一种利用微软Kinect传感器、k-means聚类和隐马尔可夫模型(hmm)识别人类动作的新方法。Kinect能够从深度图像中生成人体骨骼信息,此外,从骨骼信息中生成代表特定身体部位的特征,并用于记录动作。然后k-means聚类将特征分配到聚类中,hmm分析这些聚类之间的关系。通过这样做,我们实现了行动学习和识别。根据我们的实验结果,平均准确率为91.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human Action Recognition Based on Depth Images from Microsoft Kinect
Human action recognition is very important in human computer interaction. In this article, we present a new method of recognizing human actions by using Microsoft Kinect sensor, k-means clustering and Hidden Markov Models (HMMs). Kinect is able to generate human skeleton information from depth images, in addition, features representing specific body parts are generated from the skeleton information and are used for recording actions. Then k-means clustering assigns the features into clusters and HMMs analyze the relationship between these clusters. By doing this, we achieved action learning and recognition. According to our experimental results, the average accuracy was 91.4 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Bayesian Networks with Human Personality and Situation Information to Detect Emotion States from EEG Parameter Analysis of DDE-Based PID Controller Tuning Method Optimized Workforce Scheduling in Bus Transit Companies Reactions of Brain in English Reading Tests A Feature Representation Method of Social Graph for Malware Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1