K. S. Prashant, V. J. Mathews, Peter J. Hahn
{"title":"A new model of perceptual threshold functions for application in image compression systems","authors":"K. S. Prashant, V. J. Mathews, Peter J. Hahn","doi":"10.1109/DCC.1995.515527","DOIUrl":null,"url":null,"abstract":"This paper discusses the development of a perceptual threshold model for the human visual system. The perceptual threshold functions describe the levels of distortions present at each location in an image that human observers can not detect. Models of perceptual threshold functions are useful in image compression problems because an image compression system that constrains the distortion in the coded images below the levels suggested by the perceptual threshold function performs perceptually lossless compression. Our model involves the decomposition of an input image into its Fourrier components and spatially localized Gabor elementary functions. Data from psychophysical masking experiments are then used to calculate the perceptual detection threshold for each Gabor transform coefficient in the presence of sinusoidal masks. The result of one experiment involving distorting an image using additive noise of magnitudes as suggested by the threshold model is also included in this paper.","PeriodicalId":107017,"journal":{"name":"Proceedings DCC '95 Data Compression Conference","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '95 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1995.515527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文讨论了人类视觉系统的感知阈值模型的发展。感知阈值函数描述了人类观察者无法检测到的图像中每个位置的扭曲程度。感知阈值函数模型在图像压缩问题中很有用,因为图像压缩系统将编码图像中的失真限制在感知阈值函数建议的水平以下,从而执行感知无损压缩。我们的模型涉及将输入图像分解为其傅里叶分量和空间局部化的Gabor初等函数。然后使用心理物理掩蔽实验的数据来计算正弦掩蔽存在时每个Gabor变换系数的感知检测阈值。本文还包括一个实验的结果,该实验涉及使用阈值模型所建议的幅度加性噪声来扭曲图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new model of perceptual threshold functions for application in image compression systems
This paper discusses the development of a perceptual threshold model for the human visual system. The perceptual threshold functions describe the levels of distortions present at each location in an image that human observers can not detect. Models of perceptual threshold functions are useful in image compression problems because an image compression system that constrains the distortion in the coded images below the levels suggested by the perceptual threshold function performs perceptually lossless compression. Our model involves the decomposition of an input image into its Fourrier components and spatially localized Gabor elementary functions. Data from psychophysical masking experiments are then used to calculate the perceptual detection threshold for each Gabor transform coefficient in the presence of sinusoidal masks. The result of one experiment involving distorting an image using additive noise of magnitudes as suggested by the threshold model is also included in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiplication-free subband coding of color images Constraining the size of the instantaneous alphabet in trellis quantizers Classified conditional entropy coding of LSP parameters Lattice-based designs of direct sum codebooks for vector quantization On the performance of affine index assignments for redundancy free source-channel coding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1