配置遗传算法求解逆热传导问题

S. Szénási, I. Felde
{"title":"配置遗传算法求解逆热传导问题","authors":"S. Szénási, I. Felde","doi":"10.1109/SAMI.2017.7880340","DOIUrl":null,"url":null,"abstract":"Solving the inverse heat conduction problem is the key to determining heat flux on the surface of an object. Unfortunately, it is a typical ill-posed problem, as only numerical approximation methods are available for finding an approximate solution. It is common to use some heuristic methods, such as genetic algorithms, particle swarm optimisation, etc. Although the main mechanisms of these approaches are well-known, the practical implementations raise several questions about the free parameters (population size, elitism, mutation probability/range, etc.). This paper presents the results of several experimental tests to find the appropriate attributes of a genetic algorithm based approach to quickly and reliably solve the inverse heat conduction problem.","PeriodicalId":105599,"journal":{"name":"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Configuring genetic algorithm to solve the inverse heat conduction problem\",\"authors\":\"S. Szénási, I. Felde\",\"doi\":\"10.1109/SAMI.2017.7880340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solving the inverse heat conduction problem is the key to determining heat flux on the surface of an object. Unfortunately, it is a typical ill-posed problem, as only numerical approximation methods are available for finding an approximate solution. It is common to use some heuristic methods, such as genetic algorithms, particle swarm optimisation, etc. Although the main mechanisms of these approaches are well-known, the practical implementations raise several questions about the free parameters (population size, elitism, mutation probability/range, etc.). This paper presents the results of several experimental tests to find the appropriate attributes of a genetic algorithm based approach to quickly and reliably solve the inverse heat conduction problem.\",\"PeriodicalId\":105599,\"journal\":{\"name\":\"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMI.2017.7880340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI.2017.7880340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

求解热传导逆问题是确定物体表面热流密度的关键。不幸的是,这是一个典型的不适定问题,因为只有数值近似方法可用于寻找近似解。常用一些启发式方法,如遗传算法、粒子群优化等。虽然这些方法的主要机制是众所周知的,但实际实现提出了一些关于自由参数的问题(群体大小,精英,突变概率/范围等)。本文给出了几个实验测试的结果,找到了一种基于遗传算法的合适属性的方法来快速、可靠地求解反热传导问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Configuring genetic algorithm to solve the inverse heat conduction problem
Solving the inverse heat conduction problem is the key to determining heat flux on the surface of an object. Unfortunately, it is a typical ill-posed problem, as only numerical approximation methods are available for finding an approximate solution. It is common to use some heuristic methods, such as genetic algorithms, particle swarm optimisation, etc. Although the main mechanisms of these approaches are well-known, the practical implementations raise several questions about the free parameters (population size, elitism, mutation probability/range, etc.). This paper presents the results of several experimental tests to find the appropriate attributes of a genetic algorithm based approach to quickly and reliably solve the inverse heat conduction problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-organising symbolic aggregate approximation for real-time fault detection and diagnosis in transient dynamic systems Robot navigation in unknown environment using fuzzy logic Artificial neural network based IDS Video-based measurement system of parameters of the pyrotechnic effect Building environment analysis based on clustering methods from sensor data on top of the Hadoop platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1