一种面向增材制造的多孔结构优化设计新方法

Jiaqi Zhao, Ming Zhang, Yu Zhu, Xin Li, Wang Leijie
{"title":"一种面向增材制造的多孔结构优化设计新方法","authors":"Jiaqi Zhao, Ming Zhang, Yu Zhu, Xin Li, Wang Leijie","doi":"10.1115/IMECE2018-86952","DOIUrl":null,"url":null,"abstract":"The advanced development of additive manufacturing (AM) has greatly promoted the research and application of variable density porous structures. Meanwhile, AM constraints highlight the significance of design for AM (DFAM). The structural performance of existing topology optimization (TO) based design methods is limited and AM constraints are little considered. In this paper, we propose a novel optimization design method of AM oriented porous structures which allows the existence of void. A novel density filter is designed to achieve multi-interval TO for better structural performance and satisfy the minimum feature size constraint. Meanwhile, another customized density filter is designed to obtained support-free porous structure for the buildability constraint of AM. FEA results demonstrate that optimized porous structure designed by proposed method has better stiffness performance and adaptability to AM constraints, compared with existing methods.","PeriodicalId":201128,"journal":{"name":"Volume 13: Design, Reliability, Safety, and Risk","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Novel Optimization Design Method of Additive Manufacturing Oriented Porous Structures\",\"authors\":\"Jiaqi Zhao, Ming Zhang, Yu Zhu, Xin Li, Wang Leijie\",\"doi\":\"10.1115/IMECE2018-86952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advanced development of additive manufacturing (AM) has greatly promoted the research and application of variable density porous structures. Meanwhile, AM constraints highlight the significance of design for AM (DFAM). The structural performance of existing topology optimization (TO) based design methods is limited and AM constraints are little considered. In this paper, we propose a novel optimization design method of AM oriented porous structures which allows the existence of void. A novel density filter is designed to achieve multi-interval TO for better structural performance and satisfy the minimum feature size constraint. Meanwhile, another customized density filter is designed to obtained support-free porous structure for the buildability constraint of AM. FEA results demonstrate that optimized porous structure designed by proposed method has better stiffness performance and adaptability to AM constraints, compared with existing methods.\",\"PeriodicalId\":201128,\"journal\":{\"name\":\"Volume 13: Design, Reliability, Safety, and Risk\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 13: Design, Reliability, Safety, and Risk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-86952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 13: Design, Reliability, Safety, and Risk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-86952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

增材制造技术的先进发展极大地促进了变密度多孔结构的研究和应用。同时,增材制造约束也凸显了增材制造设计的重要性。现有的基于拓扑优化(TO)的设计方法结构性能有限,很少考虑AM约束。本文提出了一种允许空隙存在的AM定向多孔结构的优化设计方法。设计了一种新型的密度滤波器,在满足最小特征尺寸约束的前提下,实现了结构性能更好的多区间to。同时,设计了另一种定制密度滤波器,以获得无支撑的多孔结构,以满足增材制造的可构建性约束。有限元分析结果表明,与现有方法相比,该方法设计的优化多孔结构具有更好的刚度性能和对增材制造约束的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Optimization Design Method of Additive Manufacturing Oriented Porous Structures
The advanced development of additive manufacturing (AM) has greatly promoted the research and application of variable density porous structures. Meanwhile, AM constraints highlight the significance of design for AM (DFAM). The structural performance of existing topology optimization (TO) based design methods is limited and AM constraints are little considered. In this paper, we propose a novel optimization design method of AM oriented porous structures which allows the existence of void. A novel density filter is designed to achieve multi-interval TO for better structural performance and satisfy the minimum feature size constraint. Meanwhile, another customized density filter is designed to obtained support-free porous structure for the buildability constraint of AM. FEA results demonstrate that optimized porous structure designed by proposed method has better stiffness performance and adaptability to AM constraints, compared with existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Engineering a Pool Ladder to Prevent Drownings in Above-Ground Pools Side Structure Integrity Research for Passenger Rail Equipment A Set of Preliminary Model Experiments for Studying Engineering Student Biases in the Assessment and Prioritization of Risks Uncertainty Optimization Design of Vehicle Wheel Made of Long Glass Fiber Reinforced Thermoplastic Limit Load Analysis of As-Fabricated Pipe Bends With Low Ovality Under In-Plane Closing Moment Loading and Internal Pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1