平面与曲面湍流边界层内微泡分布的可视化

Y. Murai, Daichi Saito, Daiki Ushiyama, H. Park, Y. Tasaka
{"title":"平面与曲面湍流边界层内微泡分布的可视化","authors":"Y. Murai, Daichi Saito, Daiki Ushiyama, H. Park, Y. Tasaka","doi":"10.1115/ajkfluids2019-4647","DOIUrl":null,"url":null,"abstract":"\n How microbubbles behave inside turbulent boundary layers are investigated experimentally. Water electrolysis is applied for generation of microbubbles in water, of which electrodes are flash mounted on the solid wall in the upstream section of the measurement area. Four kinds of solid surfaces are examined to compare the microbubble distribution. For a circular cylinder of the radius R = 22 mm at Re = 5,000, we found that microbubbles depart from the surface earlier than the liquid boundary layer. For an elliptic cylinder of the curvature radius of R = 60 mm and a hydrofoil of NACA0040, microbubble injection made the separation point move downstream in the range of 9,000 < Re < 90,000. To compare the effect with the cases of flat solid surfaces (R = infinity), we visualized three-dimensional distribution of microbubbles with color-coded volumetric illumination technique. The result has shown formation of microbubble clusters intermittently, which has Coulomb potential due to negative electric charge on bubble interfaces.","PeriodicalId":322380,"journal":{"name":"Volume 5: Multiphase Flow","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualization of Microbubble Distribution Inside Turbulent Boundary Layer Along Flat and Curved Solid Surfaces\",\"authors\":\"Y. Murai, Daichi Saito, Daiki Ushiyama, H. Park, Y. Tasaka\",\"doi\":\"10.1115/ajkfluids2019-4647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n How microbubbles behave inside turbulent boundary layers are investigated experimentally. Water electrolysis is applied for generation of microbubbles in water, of which electrodes are flash mounted on the solid wall in the upstream section of the measurement area. Four kinds of solid surfaces are examined to compare the microbubble distribution. For a circular cylinder of the radius R = 22 mm at Re = 5,000, we found that microbubbles depart from the surface earlier than the liquid boundary layer. For an elliptic cylinder of the curvature radius of R = 60 mm and a hydrofoil of NACA0040, microbubble injection made the separation point move downstream in the range of 9,000 < Re < 90,000. To compare the effect with the cases of flat solid surfaces (R = infinity), we visualized three-dimensional distribution of microbubbles with color-coded volumetric illumination technique. The result has shown formation of microbubble clusters intermittently, which has Coulomb potential due to negative electric charge on bubble interfaces.\",\"PeriodicalId\":322380,\"journal\":{\"name\":\"Volume 5: Multiphase Flow\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5: Multiphase Flow\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ajkfluids2019-4647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Multiphase Flow","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-4647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

实验研究了微气泡在湍流边界层中的行为。采用水电解在水中产生微泡,微泡电极闪装在测量区域上游段的固体壁上。研究了四种固体表面的微泡分布。对于半径为R = 22 mm的圆柱体,在Re = 5000时,我们发现微气泡早于液边界层离开表面。对于曲率半径R = 60 mm的椭圆圆柱体和NACA0040水翼,微泡注入使分离点在9000 < Re < 90000范围内向下游移动。为了与平面固体表面(R =无穷大)的效果进行比较,我们用彩色编码的体积照明技术可视化了微气泡的三维分布。结果表明,微气泡团簇的形成是间歇性的,由于气泡界面上的负电荷,微气泡团簇具有库仑电位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visualization of Microbubble Distribution Inside Turbulent Boundary Layer Along Flat and Curved Solid Surfaces
How microbubbles behave inside turbulent boundary layers are investigated experimentally. Water electrolysis is applied for generation of microbubbles in water, of which electrodes are flash mounted on the solid wall in the upstream section of the measurement area. Four kinds of solid surfaces are examined to compare the microbubble distribution. For a circular cylinder of the radius R = 22 mm at Re = 5,000, we found that microbubbles depart from the surface earlier than the liquid boundary layer. For an elliptic cylinder of the curvature radius of R = 60 mm and a hydrofoil of NACA0040, microbubble injection made the separation point move downstream in the range of 9,000 < Re < 90,000. To compare the effect with the cases of flat solid surfaces (R = infinity), we visualized three-dimensional distribution of microbubbles with color-coded volumetric illumination technique. The result has shown formation of microbubble clusters intermittently, which has Coulomb potential due to negative electric charge on bubble interfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Transient Approach for Estimating Concentration of Water Droplets in Oil and Corrosion Assessment in the Oil and Gas Industry Effect of Interstage Injection on Compressor Flow Characteristic Air Entrainment and Bubble Generation by a Hydrofoil in a Turbulent Channel Flow Experimental Study of Bubble-Droplet Interactions in Improved Primary Oil Separation Effects of Liquid Viscosity on Laser-Induced Shock Dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1