全介电、非线性、可重构的超表面使能光束转换器(会议报告)

Yun Xu, Jingbo Sun, J. Frantz, M. Shalaev, J. Myers, R. Bekele, A. Tsukernik, W. Walasik, J. Sanghera, N. Litchinitser
{"title":"全介电、非线性、可重构的超表面使能光束转换器(会议报告)","authors":"Yun Xu, Jingbo Sun, J. Frantz, M. Shalaev, J. Myers, R. Bekele, A. Tsukernik, W. Walasik, J. Sanghera, N. Litchinitser","doi":"10.1117/12.2322146","DOIUrl":null,"url":null,"abstract":"Optical beams with a phase term proportional to the azimuthal angle possess a singularity at the beam center and carry an orbital angular momentum (OAM). The OAM beams find important applications including the trapping and rotation of microscopic objects, atom-light interactions and optical communications. The OAM beams can be generated by spiral phase plates or spatial light modulators which are bulky. Recently, planar optical components including q-plates, arrays of nano-antennas and all-dielectric metasurfaces, have attracted significant attention. However, they lack reconfigurability, which means that once the components are fabricated, their functionality cannot be changed.\nIn this work, we experimentally demonstrate a nonlinear metasurface-based beam converter which is designed to transform a Hermite-Gaussian beam to a vortex beam with an OAM in a transmission mode. The proposed converter is built of an array of nano-cubes made of chalcogenide(As2S3) glass. Chalcogenides offer several advantages for designing all-dielectric, nonlinear metasurfaces, including high linear refractive index at near-infrared wavelengths, low losses, and relatively high third-order nonlinear coefficient. In particular, reconfigurability is enabled by the intensity-dependent refractive index or Kerr nonlinearity. Input Hermite-Gaussian beam at low intensity transmitting through the metasurface acquired an OAM, while at high intensity, remained its original intensity and phase profile. The parameters of the reconfigurable metasurface were optimized and its functionality was verified using numerical simulation and in laboratory experiments. Compared to conventional metasurfaces, their nonlinear counterparts are likely to enable a number of novel devices for all-optical switching and integrated circuits applications.","PeriodicalId":169708,"journal":{"name":"Metamaterials, Metadevices, and Metasystems 2018","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"All-dielectric, nonlinear, reconfigurable metasurface-enabled optical beam converter (Conference Presentation)\",\"authors\":\"Yun Xu, Jingbo Sun, J. Frantz, M. Shalaev, J. Myers, R. Bekele, A. Tsukernik, W. Walasik, J. Sanghera, N. Litchinitser\",\"doi\":\"10.1117/12.2322146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical beams with a phase term proportional to the azimuthal angle possess a singularity at the beam center and carry an orbital angular momentum (OAM). The OAM beams find important applications including the trapping and rotation of microscopic objects, atom-light interactions and optical communications. The OAM beams can be generated by spiral phase plates or spatial light modulators which are bulky. Recently, planar optical components including q-plates, arrays of nano-antennas and all-dielectric metasurfaces, have attracted significant attention. However, they lack reconfigurability, which means that once the components are fabricated, their functionality cannot be changed.\\nIn this work, we experimentally demonstrate a nonlinear metasurface-based beam converter which is designed to transform a Hermite-Gaussian beam to a vortex beam with an OAM in a transmission mode. The proposed converter is built of an array of nano-cubes made of chalcogenide(As2S3) glass. Chalcogenides offer several advantages for designing all-dielectric, nonlinear metasurfaces, including high linear refractive index at near-infrared wavelengths, low losses, and relatively high third-order nonlinear coefficient. In particular, reconfigurability is enabled by the intensity-dependent refractive index or Kerr nonlinearity. Input Hermite-Gaussian beam at low intensity transmitting through the metasurface acquired an OAM, while at high intensity, remained its original intensity and phase profile. The parameters of the reconfigurable metasurface were optimized and its functionality was verified using numerical simulation and in laboratory experiments. Compared to conventional metasurfaces, their nonlinear counterparts are likely to enable a number of novel devices for all-optical switching and integrated circuits applications.\",\"PeriodicalId\":169708,\"journal\":{\"name\":\"Metamaterials, Metadevices, and Metasystems 2018\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metamaterials, Metadevices, and Metasystems 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2322146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metamaterials, Metadevices, and Metasystems 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2322146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

相位项与方位角成正比的光束在光束中心具有奇异性,并具有轨道角动量(OAM)。OAM光束的重要应用包括微观物体的捕获和旋转、原子-光相互作用和光通信。OAM光束可以由螺旋相位板或体积较大的空间光调制器产生。近年来,包括q板、纳米天线阵列和全介电超表面在内的平面光学元件引起了人们的广泛关注。然而,它们缺乏可重构性,这意味着一旦组件被制造出来,它们的功能就不能被改变。在这项工作中,我们实验演示了一种基于非线性超表面的光束转换器,该转换器旨在将厄米-高斯光束转换为具有OAM的传输模式下的涡旋光束。所提出的转换器是由硫系玻璃(As2S3)制成的纳米立方体阵列构成的。硫族化合物具有近红外高线性折射率、低损耗和较高三阶非线性系数等优点,可用于设计全介电非线性超表面。特别是,可重构性是由强度相关的折射率或克尔非线性实现的。输入厄米高斯光束在低强度下通过超表面获得了OAM,而在高强度下则保持了其原始强度和相位轮廓。通过数值模拟和室内实验验证了可重构超表面的功能,并对其参数进行了优化。与传统的超表面相比,它们的非线性对应物可能使许多新型器件用于全光开关和集成电路应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
All-dielectric, nonlinear, reconfigurable metasurface-enabled optical beam converter (Conference Presentation)
Optical beams with a phase term proportional to the azimuthal angle possess a singularity at the beam center and carry an orbital angular momentum (OAM). The OAM beams find important applications including the trapping and rotation of microscopic objects, atom-light interactions and optical communications. The OAM beams can be generated by spiral phase plates or spatial light modulators which are bulky. Recently, planar optical components including q-plates, arrays of nano-antennas and all-dielectric metasurfaces, have attracted significant attention. However, they lack reconfigurability, which means that once the components are fabricated, their functionality cannot be changed. In this work, we experimentally demonstrate a nonlinear metasurface-based beam converter which is designed to transform a Hermite-Gaussian beam to a vortex beam with an OAM in a transmission mode. The proposed converter is built of an array of nano-cubes made of chalcogenide(As2S3) glass. Chalcogenides offer several advantages for designing all-dielectric, nonlinear metasurfaces, including high linear refractive index at near-infrared wavelengths, low losses, and relatively high third-order nonlinear coefficient. In particular, reconfigurability is enabled by the intensity-dependent refractive index or Kerr nonlinearity. Input Hermite-Gaussian beam at low intensity transmitting through the metasurface acquired an OAM, while at high intensity, remained its original intensity and phase profile. The parameters of the reconfigurable metasurface were optimized and its functionality was verified using numerical simulation and in laboratory experiments. Compared to conventional metasurfaces, their nonlinear counterparts are likely to enable a number of novel devices for all-optical switching and integrated circuits applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Front Matter: Volume 10719 Magnetooptic rigorous coupled wave analysis: numerical investigation of nonreciprocal waveguiding structures (Conference Presentation) Metasurfaces for enhanced nonlinear optics and quantum imaging (Conference Presentation) Wavelength-dependent third harmonic generation in plasmonic gold nanoantennas: quantitative determination of the d-band influence (Conference Presentation) Time-bandwidth limit and reciprocity in optical nanostructures (Conference Presentation)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1