{"title":"Electrically driven plasmonic nanorod metamaterials (Conference Presentation)","authors":"Pan Wang, A. Krasavin, M. Nasir, A. Zayats","doi":"10.1117/12.2323247","DOIUrl":"https://doi.org/10.1117/12.2323247","url":null,"abstract":"","PeriodicalId":169708,"journal":{"name":"Metamaterials, Metadevices, and Metasystems 2018","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134283802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Wickberg, A. Abass, H. Hsiao, C. Rockstuhl, M. Wegener
We recently introduced laminate metamaterials composed of a dielectric ABC layer sequence made by atomic-layer deposition. The ABC sequence breaks inversion symmetry, allowing for second-harmonic generation. Here, we discuss 3D polymeric woodpile photonic crystals conformally coated with such ABC laminate metamaterials (unpublished). In our experiments on such meta-crystals with 24 layers and 600 nm rod spacing at around 800-900 nm fundamental wavelength, we find up to 1000-fold enhancement of the second-harmonic conversion efficiency as compared to the same ABC laminate on a planar glass substrate (for 45 degrees angle of incidence with respect to the substrate and p-polarization). To clarify the underlying mechanism, we have performed extensive numerical calculations based on solving the full-wave problem for the fundamental wave, computing the second-harmonic 3D source-term distribution assuming tensor elements for the ABC laminate as found previously, and numerically computing the resulting emitted second-harmonic wave. This analysis indicates that the enhancement is consistent with guided-mode resonant excitations at the fundamental wavelength inside of the 3D meta-crystal slab, leading to a standing-wave behavior providing beneficial local-field enhancements.
{"title":"Second-harmonic generation by 3D ABC-laminate meta-crystals (Conference Presentation)","authors":"A. Wickberg, A. Abass, H. Hsiao, C. Rockstuhl, M. Wegener","doi":"10.1117/12.2317934","DOIUrl":"https://doi.org/10.1117/12.2317934","url":null,"abstract":"We recently introduced laminate metamaterials composed of a dielectric ABC layer sequence made by atomic-layer deposition. The ABC sequence breaks inversion symmetry, allowing for second-harmonic generation. Here, we discuss 3D polymeric woodpile photonic crystals conformally coated with such ABC laminate metamaterials (unpublished). In our experiments on such meta-crystals with 24 layers and 600 nm rod spacing at around 800-900 nm fundamental wavelength, we find up to 1000-fold enhancement of the second-harmonic conversion efficiency as compared to the same ABC laminate on a planar glass substrate (for 45 degrees angle of incidence with respect to the substrate and p-polarization).\u0000\u0000To clarify the underlying mechanism, we have performed extensive numerical calculations based on solving the full-wave problem for the fundamental wave, computing the second-harmonic 3D source-term distribution assuming tensor elements for the ABC laminate as found previously, and numerically computing the resulting emitted second-harmonic wave. This analysis indicates that the enhancement is consistent with guided-mode resonant excitations at the fundamental wavelength inside of the 3D meta-crystal slab, leading to a standing-wave behavior providing beneficial local-field enhancements.","PeriodicalId":169708,"journal":{"name":"Metamaterials, Metadevices, and Metasystems 2018","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131135166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Bogdanov, M. Shalaginov, O. Makarova, Chin-Cheng Chiang, A. Lagutchev, A. Boltasseva, V. Shalaev
Nitrogen-vacancy (NV) color centers in diamond possess electronic spins that one can manipulate coherently at room temperature using RF signals. The optical spin readout plays a key role in their performance for nanoscale magnetometry and quantum information processing. We demonstrate that plasmonic nanostructures can simultaneously guide optical, microwave and low-frequency signals ensuring spin manipulation and readout in an ultracompact setting. They can also enhance detected photon rates through efficient photon collection and shortening of the fluorescence lifetime. We show that in the case of dense NV ensembles the design of the optical readout interface must emphasize photon collection efficiency over Purcell enhancement. However, in the case of single NV centers, large Purcell enhancement may significantly improve the spin readout sensitivity. Enhancement for high-fidelity readout can be provided by nanoparticle-on-metal antennas featuring ultraconfined plasmonic modes.
{"title":"Spin readout of nitrogen-vacancy centers with plasmonic nanostructures (Conference Presentation)","authors":"S. Bogdanov, M. Shalaginov, O. Makarova, Chin-Cheng Chiang, A. Lagutchev, A. Boltasseva, V. Shalaev","doi":"10.1117/12.2319629","DOIUrl":"https://doi.org/10.1117/12.2319629","url":null,"abstract":"Nitrogen-vacancy (NV) color centers in diamond possess electronic spins that one can manipulate coherently at room temperature using RF signals. The optical spin readout plays a key role in their performance for nanoscale magnetometry and quantum information processing. We demonstrate that plasmonic nanostructures can simultaneously guide optical, microwave and low-frequency signals ensuring spin manipulation and readout in an ultracompact setting. They can also enhance detected photon rates through efficient photon collection and shortening of the fluorescence lifetime. We show that in the case of dense NV ensembles the design of the optical readout interface must emphasize photon collection efficiency over Purcell enhancement. However, in the case of single NV centers, large Purcell enhancement may significantly improve the spin readout sensitivity. Enhancement for high-fidelity readout can be provided by nanoparticle-on-metal antennas featuring ultraconfined plasmonic modes.","PeriodicalId":169708,"journal":{"name":"Metamaterials, Metadevices, and Metasystems 2018","volume":"90 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129061154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The time-bandwidth limit refers to the trade-off between the time delay that can be applied to a signal as it travels through a device and its bandwidth. Recently, there have been several studies showing that this bound can be broken in nonreciprocal nano-structures, including nonreciprocal cavities and terminated unidirectional waveguides. Here, we explore the physical mechanisms involved in these structures, and explore the opportunities offered by non-reciprocal elements to control the delay applied to an impinging signal.
{"title":"Time-bandwidth limit and reciprocity in optical nanostructures (Conference Presentation)","authors":"A. Alú, S. Mann, D. Sounas","doi":"10.1117/12.2320163","DOIUrl":"https://doi.org/10.1117/12.2320163","url":null,"abstract":"The time-bandwidth limit refers to the trade-off between the time delay that can be applied to a signal as it travels through a device and its bandwidth. Recently, there have been several studies showing that this bound can be broken in nonreciprocal nano-structures, including nonreciprocal cavities and terminated unidirectional waveguides. Here, we explore the physical mechanisms involved in these structures, and explore the opportunities offered by non-reciprocal elements to control the delay applied to an impinging signal.","PeriodicalId":169708,"journal":{"name":"Metamaterials, Metadevices, and Metasystems 2018","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115608603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring novel material platforms for metaphotonics (Conference Presentation)","authors":"Jie Yao","doi":"10.1117/12.2323377","DOIUrl":"https://doi.org/10.1117/12.2323377","url":null,"abstract":"","PeriodicalId":169708,"journal":{"name":"Metamaterials, Metadevices, and Metasystems 2018","volume":"168 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122566770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Brewster plasmons: new optical degrees of freedom driving the forced repose of nanostructures (Conference Presentation)","authors":"G. Rosenblatt, B. Simkhovich, M. Orenstein","doi":"10.1117/12.2320580","DOIUrl":"https://doi.org/10.1117/12.2320580","url":null,"abstract":"","PeriodicalId":169708,"journal":{"name":"Metamaterials, Metadevices, and Metasystems 2018","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124338719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}