{"title":"微结构光子晶体光纤的研究与仿真","authors":"Ahmed Al-Muraeb, H. Abdel-Aty-Zohdy","doi":"10.1109/NAECON.2014.7045773","DOIUrl":null,"url":null,"abstract":"Photonic Crystal Fibers (PCF) have interesting features such as high non-linearity, four-wave mixing, and polarization-maintaining. These features offer new improvements and solutions for optoelectronic elements such as multi-channel filters, PCF lasers, PCF amplifiers, and tunable (multi-wavelength) fiber lasers. This work presents study and simulation using MATLAB® for a microstructured optical fiber based on defected square Photonic Crystal Lattice (PCL) with fixed value of longitudinal component of propagation constant, deploying Plane Wave Expansion (PWE) method. The PCL parameters considered are: structure period a = 1 μm; element radius = 0.2 μm; background material relative permittivity = 2.1316; element relative permittivity = 1; number of plane waves = 3; number of mesh nodes per unit cell = 30 (in each x & y directions); unit cell size of strictly periodic (defectless) structure = 30 × 30 nodes; unit cell size of the defected structure = 5 × unit cell size of strictly periodic structure; defect location is at center. The paper results include modes field distribution, and effects of: permittivity difference change, number of plane waves, and propagation constant. The results and the associated effects are highlighted and discussed.","PeriodicalId":318539,"journal":{"name":"NAECON 2014 - IEEE National Aerospace and Electronics Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study and simulation of microstructured photonic crystal optical fiber\",\"authors\":\"Ahmed Al-Muraeb, H. Abdel-Aty-Zohdy\",\"doi\":\"10.1109/NAECON.2014.7045773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photonic Crystal Fibers (PCF) have interesting features such as high non-linearity, four-wave mixing, and polarization-maintaining. These features offer new improvements and solutions for optoelectronic elements such as multi-channel filters, PCF lasers, PCF amplifiers, and tunable (multi-wavelength) fiber lasers. This work presents study and simulation using MATLAB® for a microstructured optical fiber based on defected square Photonic Crystal Lattice (PCL) with fixed value of longitudinal component of propagation constant, deploying Plane Wave Expansion (PWE) method. The PCL parameters considered are: structure period a = 1 μm; element radius = 0.2 μm; background material relative permittivity = 2.1316; element relative permittivity = 1; number of plane waves = 3; number of mesh nodes per unit cell = 30 (in each x & y directions); unit cell size of strictly periodic (defectless) structure = 30 × 30 nodes; unit cell size of the defected structure = 5 × unit cell size of strictly periodic structure; defect location is at center. The paper results include modes field distribution, and effects of: permittivity difference change, number of plane waves, and propagation constant. The results and the associated effects are highlighted and discussed.\",\"PeriodicalId\":318539,\"journal\":{\"name\":\"NAECON 2014 - IEEE National Aerospace and Electronics Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAECON 2014 - IEEE National Aerospace and Electronics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.2014.7045773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAECON 2014 - IEEE National Aerospace and Electronics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2014.7045773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study and simulation of microstructured photonic crystal optical fiber
Photonic Crystal Fibers (PCF) have interesting features such as high non-linearity, four-wave mixing, and polarization-maintaining. These features offer new improvements and solutions for optoelectronic elements such as multi-channel filters, PCF lasers, PCF amplifiers, and tunable (multi-wavelength) fiber lasers. This work presents study and simulation using MATLAB® for a microstructured optical fiber based on defected square Photonic Crystal Lattice (PCL) with fixed value of longitudinal component of propagation constant, deploying Plane Wave Expansion (PWE) method. The PCL parameters considered are: structure period a = 1 μm; element radius = 0.2 μm; background material relative permittivity = 2.1316; element relative permittivity = 1; number of plane waves = 3; number of mesh nodes per unit cell = 30 (in each x & y directions); unit cell size of strictly periodic (defectless) structure = 30 × 30 nodes; unit cell size of the defected structure = 5 × unit cell size of strictly periodic structure; defect location is at center. The paper results include modes field distribution, and effects of: permittivity difference change, number of plane waves, and propagation constant. The results and the associated effects are highlighted and discussed.