基于颜色轮廓框架的物体外观自主学习

Per-Erik Forssén, A. Moe
{"title":"基于颜色轮廓框架的物体外观自主学习","authors":"Per-Erik Forssén, A. Moe","doi":"10.1109/CRV.2006.17","DOIUrl":null,"url":null,"abstract":"In this paper we make use of the idea that a robot can autonomously discover objects and learn their appearances by poking and prodding at interesting parts of a scene. In order to make the resultant object recognition ability more robust, and discriminative, we replace earlier used colour histogram features with an invariant texture-patch method. The texture patches are extracted in a similarity invariant frame which is constructed from short colour contour segments. We demonstrate the robustness of our invariant frames with a repeatability test under general homography transformations of a planar scene. Through the repeatability test, we find that defining the frame using using ellipse segments instead of lines where this is appropriate improves repeatability. We also apply the developed features to autonomous learning of object appearances, and show how the learned objects can be recognised under out-of-plane rotation and scale changes.","PeriodicalId":369170,"journal":{"name":"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Autonomous Learning of Object Appearances using Colour Contour Frames\",\"authors\":\"Per-Erik Forssén, A. Moe\",\"doi\":\"10.1109/CRV.2006.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we make use of the idea that a robot can autonomously discover objects and learn their appearances by poking and prodding at interesting parts of a scene. In order to make the resultant object recognition ability more robust, and discriminative, we replace earlier used colour histogram features with an invariant texture-patch method. The texture patches are extracted in a similarity invariant frame which is constructed from short colour contour segments. We demonstrate the robustness of our invariant frames with a repeatability test under general homography transformations of a planar scene. Through the repeatability test, we find that defining the frame using using ellipse segments instead of lines where this is appropriate improves repeatability. We also apply the developed features to autonomous learning of object appearances, and show how the learned objects can be recognised under out-of-plane rotation and scale changes.\",\"PeriodicalId\":369170,\"journal\":{\"name\":\"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2006.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2006.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

在本文中,我们利用了机器人可以自主发现物体的想法,并通过戳戳场景中有趣的部分来学习它们的外观。为了提高目标识别的鲁棒性和区别性,我们用不变的纹理补丁方法代替了之前使用的颜色直方图特征。在由短彩色轮廓段构成的相似不变框架中提取纹理块。在平面场景的一般单应变换下,我们用可重复性检验证明了不变帧的鲁棒性。通过可重复性测试,我们发现使用椭圆段而不是线条来定义框架可以提高可重复性。我们还将开发的特征应用于物体外观的自主学习,并展示了如何在面外旋转和尺度变化的情况下识别学习到的物体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Autonomous Learning of Object Appearances using Colour Contour Frames
In this paper we make use of the idea that a robot can autonomously discover objects and learn their appearances by poking and prodding at interesting parts of a scene. In order to make the resultant object recognition ability more robust, and discriminative, we replace earlier used colour histogram features with an invariant texture-patch method. The texture patches are extracted in a similarity invariant frame which is constructed from short colour contour segments. We demonstrate the robustness of our invariant frames with a repeatability test under general homography transformations of a planar scene. Through the repeatability test, we find that defining the frame using using ellipse segments instead of lines where this is appropriate improves repeatability. We also apply the developed features to autonomous learning of object appearances, and show how the learned objects can be recognised under out-of-plane rotation and scale changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image Classification and Retrieval using Correlation Photometric Stereo with Nearby Planar Distributed Illuminants Evolving a Vision-Based Line-Following Robot Controller Line Extraction with Composite Background Subtract The Nomad 200 and the Nomad SuperScout: Reverse engineered and resurrected
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1