图像涂抹的非局部曲率驱动扩散模型

Li Li, Han Yu
{"title":"图像涂抹的非局部曲率驱动扩散模型","authors":"Li Li, Han Yu","doi":"10.1109/IAS.2009.141","DOIUrl":null,"url":null,"abstract":"A nonlocal image inpainting model is proposed by incorporating the nonlocal differential operators into the curvature-driven diffusion model. The new model differs from the original model in that pixels of similar structures rather than pixels in the neighborhood (the case for the original model) are utilized to estimate the lost pixels. This difference makes the new model performs very efficiently in inpainting images, especially textured images.","PeriodicalId":240354,"journal":{"name":"2009 Fifth International Conference on Information Assurance and Security","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Nonlocal Curvature-Driven Diffusion Model for Image Inpainting\",\"authors\":\"Li Li, Han Yu\",\"doi\":\"10.1109/IAS.2009.141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A nonlocal image inpainting model is proposed by incorporating the nonlocal differential operators into the curvature-driven diffusion model. The new model differs from the original model in that pixels of similar structures rather than pixels in the neighborhood (the case for the original model) are utilized to estimate the lost pixels. This difference makes the new model performs very efficiently in inpainting images, especially textured images.\",\"PeriodicalId\":240354,\"journal\":{\"name\":\"2009 Fifth International Conference on Information Assurance and Security\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Fifth International Conference on Information Assurance and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAS.2009.141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fifth International Conference on Information Assurance and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2009.141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

将非局部微分算子引入到曲率驱动扩散模型中,提出了一种非局部图像涂抹模型。新模型与原始模型的不同之处在于,使用相似结构的像素而不是邻近的像素(原始模型的情况)来估计丢失的像素。这种差异使得新模型在绘制图像时非常有效,特别是纹理图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlocal Curvature-Driven Diffusion Model for Image Inpainting
A nonlocal image inpainting model is proposed by incorporating the nonlocal differential operators into the curvature-driven diffusion model. The new model differs from the original model in that pixels of similar structures rather than pixels in the neighborhood (the case for the original model) are utilized to estimate the lost pixels. This difference makes the new model performs very efficiently in inpainting images, especially textured images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Joint Multiscale Algorithm with Auto-adapted Threshold for Image Denoising E-government Security Management: Key Factors and Countermeasure Security Threats and Countermeasures for Intra-vehicle Networks 2-Level-Wavelet-Based License Plate Edge Detection Proxy Re-encryption Scheme Based on SK Identity Based Encryption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1