基于机器学习的器件仿真,多变量非线性回归评估器件参数可变性对双栅全功率MOSFET阈值电压的影响

S. Moparthi, C. Yadav, G. Saramekala, P. Tiwari
{"title":"基于机器学习的器件仿真,多变量非线性回归评估器件参数可变性对双栅全功率MOSFET阈值电压的影响","authors":"S. Moparthi, C. Yadav, G. Saramekala, P. Tiwari","doi":"10.1109/ICCS51219.2020.9336608","DOIUrl":null,"url":null,"abstract":"For the first time, the machine learning approach is proposed for the analysis of device parameter variability impact on the threshold voltage of silicon-nanotube-based double gate-all-around (DGAA) MOSFET using multi-variable non-linear regression with five input variables. Interior-point algorithm is implemented in MATLAB and used for training the hypothesis. Algorithm is supplied with 2000 random initial guesses to ensure global minima in optimization for healthier accuracy at comfortable simulation time. The worst-case accuracy of 96.33 percent is achieved in prediction with an average percentage prediction error of 0.83 percent. Study revealed that, with proper training and optimization of the hypothesis (fitness) function it is possible to predict the threshold voltage of the device by keeping good trade-off between computation time and accuracy.","PeriodicalId":193552,"journal":{"name":"2020 IEEE 2nd International Conference on Circuits and Systems (ICCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine Learning Based Device Simulation Using Multi-variable Non-linear Regression to Assess the Impact of Device Parameter Variability on Threshold Voltage of Double Gate-All-Around (DGAA) MOSFET\",\"authors\":\"S. Moparthi, C. Yadav, G. Saramekala, P. Tiwari\",\"doi\":\"10.1109/ICCS51219.2020.9336608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the first time, the machine learning approach is proposed for the analysis of device parameter variability impact on the threshold voltage of silicon-nanotube-based double gate-all-around (DGAA) MOSFET using multi-variable non-linear regression with five input variables. Interior-point algorithm is implemented in MATLAB and used for training the hypothesis. Algorithm is supplied with 2000 random initial guesses to ensure global minima in optimization for healthier accuracy at comfortable simulation time. The worst-case accuracy of 96.33 percent is achieved in prediction with an average percentage prediction error of 0.83 percent. Study revealed that, with proper training and optimization of the hypothesis (fitness) function it is possible to predict the threshold voltage of the device by keeping good trade-off between computation time and accuracy.\",\"PeriodicalId\":193552,\"journal\":{\"name\":\"2020 IEEE 2nd International Conference on Circuits and Systems (ICCS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 2nd International Conference on Circuits and Systems (ICCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCS51219.2020.9336608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 2nd International Conference on Circuits and Systems (ICCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCS51219.2020.9336608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文首次提出了一种机器学习方法,利用5个输入变量的多变量非线性回归分析器件参数可变性对硅纳米管双栅全功率(DGAA) MOSFET阈值电压的影响。内点算法在MATLAB中实现,用于训练假设。算法提供了2000个随机初始猜测,以确保优化的全局最小值,从而在舒适的仿真时间内获得更健康的精度。预测的最坏情况准确率为96.33%,平均预测误差为0.83%。研究表明,通过对假设(适应度)函数进行适当的训练和优化,可以在计算时间和精度之间保持良好的平衡,从而预测出器件的阈值电压。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Based Device Simulation Using Multi-variable Non-linear Regression to Assess the Impact of Device Parameter Variability on Threshold Voltage of Double Gate-All-Around (DGAA) MOSFET
For the first time, the machine learning approach is proposed for the analysis of device parameter variability impact on the threshold voltage of silicon-nanotube-based double gate-all-around (DGAA) MOSFET using multi-variable non-linear regression with five input variables. Interior-point algorithm is implemented in MATLAB and used for training the hypothesis. Algorithm is supplied with 2000 random initial guesses to ensure global minima in optimization for healthier accuracy at comfortable simulation time. The worst-case accuracy of 96.33 percent is achieved in prediction with an average percentage prediction error of 0.83 percent. Study revealed that, with proper training and optimization of the hypothesis (fitness) function it is possible to predict the threshold voltage of the device by keeping good trade-off between computation time and accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Coordination Solution Strategy of Power System Transient Stability and Short Circuit Current Based on External Penalty Function Method Magnetic Field Shielding Optimization Based on Wireless Charging Ringing Test for Second-Order Sallen-Key Low-Pass Filters A Tetra-Band Microstrip Branch-Line Coupler Using Equivalent Quarter-Wavelength Transmission Lines Design Space Exploration for Heterogenous SoC Integrated with Matrix Accelerator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1