{"title":"绝缘直线天线传输线理论的准确性","authors":"T. Hertel, G.S. Smith","doi":"10.1109/APS.1999.789427","DOIUrl":null,"url":null,"abstract":"An insulated linear antenna consists of a metallic, cylindrical conductor covered by a concentric sheath of dielectric with relative permittivity /spl epsiv//sub ri/. Insulated antennas are almost always used in an ambient medium, such as soil, seawater, or biological tissue, whose electrical properties are quite different from those of the insulation; that is, either the relative permittivity /spl epsiv//sub re/ or the conductivity /spl sigma//sub e/, of the external medium is much greater than that of the insulation. The purpose of this paper is to establish the range of validity for the transmission line theory for the insulated monopole antenna to produce accurate results. This is accomplished by comparing results from the transmission line theory with accurate calculations made with the finite-difference time-domain (FDTD) method.","PeriodicalId":391546,"journal":{"name":"IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the accuracy of the transmission line theory for the insulated linear antenna\",\"authors\":\"T. Hertel, G.S. Smith\",\"doi\":\"10.1109/APS.1999.789427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An insulated linear antenna consists of a metallic, cylindrical conductor covered by a concentric sheath of dielectric with relative permittivity /spl epsiv//sub ri/. Insulated antennas are almost always used in an ambient medium, such as soil, seawater, or biological tissue, whose electrical properties are quite different from those of the insulation; that is, either the relative permittivity /spl epsiv//sub re/ or the conductivity /spl sigma//sub e/, of the external medium is much greater than that of the insulation. The purpose of this paper is to establish the range of validity for the transmission line theory for the insulated monopole antenna to produce accurate results. This is accomplished by comparing results from the transmission line theory with accurate calculations made with the finite-difference time-domain (FDTD) method.\",\"PeriodicalId\":391546,\"journal\":{\"name\":\"IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APS.1999.789427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.1999.789427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

绝缘线性天线由金属圆柱形导体和相对介电常数为/spl epsiv//sub - ri/的同心介质护套组成。绝缘天线几乎总是在环境介质中使用,如土壤、海水或生物组织,其电学特性与绝缘体的电学特性大不相同;也就是说,外部介质的相对介电常数/spl epsiv//sub re/或电导率/spl sigma//sub e/远大于绝缘。本文的目的是建立绝缘单极天线传输线理论的有效范围,以得到准确的结果。这是通过将传输线理论的结果与时域有限差分(FDTD)方法的精确计算结果进行比较来完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the accuracy of the transmission line theory for the insulated linear antenna
An insulated linear antenna consists of a metallic, cylindrical conductor covered by a concentric sheath of dielectric with relative permittivity /spl epsiv//sub ri/. Insulated antennas are almost always used in an ambient medium, such as soil, seawater, or biological tissue, whose electrical properties are quite different from those of the insulation; that is, either the relative permittivity /spl epsiv//sub re/ or the conductivity /spl sigma//sub e/, of the external medium is much greater than that of the insulation. The purpose of this paper is to establish the range of validity for the transmission line theory for the insulated monopole antenna to produce accurate results. This is accomplished by comparing results from the transmission line theory with accurate calculations made with the finite-difference time-domain (FDTD) method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FDTD modeling of an artificially-synthesized absorbing medium Running power spectrum of pulsed radiation in an absorptive randomly inhomogeneous media Numerical analysis of thin coaxial antennas for microwave coagulation therapy Local oscillator radiation from active integrated antennas Precise dielectric properties determination of laminar-shaped materials in a partially-filled waveguide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1