关于语义概念在TRECVID上的检测

M. Naphade, John R. Smith
{"title":"关于语义概念在TRECVID上的检测","authors":"M. Naphade, John R. Smith","doi":"10.1145/1027527.1027680","DOIUrl":null,"url":null,"abstract":"Semantic multimedia management is necessary for the effective and widespread utilization of multimedia repositories and realizing the potential that lies untapped in the rich multimodal information content. This challenge has driven researchers to devise new algorithms and systems that enable automatic or semi-automatic tagging of large scale multimedia content with rich semantics. An emerging research area is the detection of a predetermined set of semantic concepts that can act as semantic filters and aid in search, and manipulation. The NIST TRECVID benchmark has responded by creating a task that has evaluated the performance of concept detection. Within the scope of this benchmark task, this paper studies trends in the emerging concept detection systems, architectures and algorithms. It also analyzes strategies that have yielded reasonable success, and challenges and gaps that lie ahead.","PeriodicalId":292207,"journal":{"name":"MULTIMEDIA '04","volume":"68 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"157","resultStr":"{\"title\":\"On the detection of semantic concepts at TRECVID\",\"authors\":\"M. Naphade, John R. Smith\",\"doi\":\"10.1145/1027527.1027680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic multimedia management is necessary for the effective and widespread utilization of multimedia repositories and realizing the potential that lies untapped in the rich multimodal information content. This challenge has driven researchers to devise new algorithms and systems that enable automatic or semi-automatic tagging of large scale multimedia content with rich semantics. An emerging research area is the detection of a predetermined set of semantic concepts that can act as semantic filters and aid in search, and manipulation. The NIST TRECVID benchmark has responded by creating a task that has evaluated the performance of concept detection. Within the scope of this benchmark task, this paper studies trends in the emerging concept detection systems, architectures and algorithms. It also analyzes strategies that have yielded reasonable success, and challenges and gaps that lie ahead.\",\"PeriodicalId\":292207,\"journal\":{\"name\":\"MULTIMEDIA '04\",\"volume\":\"68 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"157\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MULTIMEDIA '04\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1027527.1027680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MULTIMEDIA '04","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1027527.1027680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 157

摘要

语义多媒体管理是有效和广泛利用多媒体存储库,实现丰富的多模态信息内容中未开发的潜力所必需的。这一挑战促使研究人员设计新的算法和系统,以实现具有丰富语义的大规模多媒体内容的自动或半自动标记。一个新兴的研究领域是检测一组预定的语义概念,这些概念可以作为语义过滤器,帮助搜索和操作。NIST的TRECVID基准测试通过创建一个任务来评估概念检测的性能。在这个基准任务的范围内,本文研究了新兴概念检测系统、架构和算法的发展趋势。它还分析了取得了一定成功的战略,以及未来面临的挑战和差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the detection of semantic concepts at TRECVID
Semantic multimedia management is necessary for the effective and widespread utilization of multimedia repositories and realizing the potential that lies untapped in the rich multimodal information content. This challenge has driven researchers to devise new algorithms and systems that enable automatic or semi-automatic tagging of large scale multimedia content with rich semantics. An emerging research area is the detection of a predetermined set of semantic concepts that can act as semantic filters and aid in search, and manipulation. The NIST TRECVID benchmark has responded by creating a task that has evaluated the performance of concept detection. Within the scope of this benchmark task, this paper studies trends in the emerging concept detection systems, architectures and algorithms. It also analyzes strategies that have yielded reasonable success, and challenges and gaps that lie ahead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Context for semantic metadata Collusion attack on a multi-key secure video proxy scheme PLSA-based image auto-annotation: constraining the latent space The relative effectiveness of concept-based versus content-based video retrieval LEMUR: robotic musical instruments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1