长期GNSS时钟偏移预测方法

Jaakko Pihlajasalo, H. Leppäkoski, Saara Kuismanen, S. Ali-Löytty, R. Piché
{"title":"长期GNSS时钟偏移预测方法","authors":"Jaakko Pihlajasalo, H. Leppäkoski, Saara Kuismanen, S. Ali-Löytty, R. Piché","doi":"10.1109/ICL-GNSS.2019.8752725","DOIUrl":null,"url":null,"abstract":"Clock offset predictions along with satellite orbit predictions are used in self-assisted GNSS to reduce the Time-to-First-Fix of a satellite positioning device. This paper compares three methods for predicting GNSS satellite clock offsets: polynomial regression, Kalman filtering and support vector machines (SVM). The regression polynomial and support vector machine model are trained from past offsets. The Kalman filter uses past offsets to estimate the clock offset coefficients. In tests with GPS and GLONASS data, it is found that all three methods significantly improve the clock predictions relative to extrapolation with the basic clock model of the last obtained broadcast ephemeris (BE). In particular, the 68% quantile of 7 day clock offset errors of GPS satellites was reduced by 66% with polynomial regression, 69% with Kalman filtering and 56% with SVM on average.","PeriodicalId":119581,"journal":{"name":"2019 International Conference on Localization and GNSS (ICL-GNSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Methods for Long-Term GNSS Clock Offset Prediction\",\"authors\":\"Jaakko Pihlajasalo, H. Leppäkoski, Saara Kuismanen, S. Ali-Löytty, R. Piché\",\"doi\":\"10.1109/ICL-GNSS.2019.8752725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clock offset predictions along with satellite orbit predictions are used in self-assisted GNSS to reduce the Time-to-First-Fix of a satellite positioning device. This paper compares three methods for predicting GNSS satellite clock offsets: polynomial regression, Kalman filtering and support vector machines (SVM). The regression polynomial and support vector machine model are trained from past offsets. The Kalman filter uses past offsets to estimate the clock offset coefficients. In tests with GPS and GLONASS data, it is found that all three methods significantly improve the clock predictions relative to extrapolation with the basic clock model of the last obtained broadcast ephemeris (BE). In particular, the 68% quantile of 7 day clock offset errors of GPS satellites was reduced by 66% with polynomial regression, 69% with Kalman filtering and 56% with SVM on average.\",\"PeriodicalId\":119581,\"journal\":{\"name\":\"2019 International Conference on Localization and GNSS (ICL-GNSS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Localization and GNSS (ICL-GNSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICL-GNSS.2019.8752725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Localization and GNSS (ICL-GNSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICL-GNSS.2019.8752725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

时钟偏移预测与卫星轨道预测一起用于自助GNSS,以减少卫星定位设备的首次定位时间。本文比较了三种预测GNSS卫星时钟偏移的方法:多项式回归、卡尔曼滤波和支持向量机。回归多项式和支持向量机模型是从过去的偏移量中训练出来的。卡尔曼滤波器使用过去的偏移量来估计时钟偏移系数。在GPS和GLONASS数据的测试中,发现这三种方法相对于用最后获得的广播星历(BE)的基本时钟模型外推,都显著提高了时钟预测。其中,GPS卫星7天时钟偏移误差68%的分位数,多项式回归平均减少66%,卡尔曼滤波平均减少69%,SVM平均减少56%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Methods for Long-Term GNSS Clock Offset Prediction
Clock offset predictions along with satellite orbit predictions are used in self-assisted GNSS to reduce the Time-to-First-Fix of a satellite positioning device. This paper compares three methods for predicting GNSS satellite clock offsets: polynomial regression, Kalman filtering and support vector machines (SVM). The regression polynomial and support vector machine model are trained from past offsets. The Kalman filter uses past offsets to estimate the clock offset coefficients. In tests with GPS and GLONASS data, it is found that all three methods significantly improve the clock predictions relative to extrapolation with the basic clock model of the last obtained broadcast ephemeris (BE). In particular, the 68% quantile of 7 day clock offset errors of GPS satellites was reduced by 66% with polynomial regression, 69% with Kalman filtering and 56% with SVM on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data from GNSS-Based Passive Radar to Support Flood Monitoring Operations Discrete Positioning Using UWB Channel Impulse Responses and Machine Learning On the Effective Length of Channel Impulse Responses in UWB Single Anchor Localization V2X based Probabilistic Cooperative Position Estimation Applying GNSS Double Differences Blind Spoofing Detection Using a Multi-Antenna Snapshot Receiver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1