Levenberg-Marquardt方法在脉冲神经网络训练中的应用

Sergio Silva, A. Ruano
{"title":"Levenberg-Marquardt方法在脉冲神经网络训练中的应用","authors":"Sergio Silva, A. Ruano","doi":"10.1109/IJCNN.2006.246919","DOIUrl":null,"url":null,"abstract":"One of the basic aspects of some neural networks is their attempt to approximate as much as possible their biological counterparts. The goal is to achieve a simple and robust network, easy to comprehend and capable of simulating the human brain at a computational level. This paper presents improvements to the Spikepro algorithm, by introducing a new encoding scheme, and illustrate the application of the Levenberg Marquardt algorithm to this third generation of neural network","PeriodicalId":145719,"journal":{"name":"2005 International Conference on Neural Networks and Brain","volume":"54 67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Application of Levenberg-Marquardt method to the training of spiking neural networks\",\"authors\":\"Sergio Silva, A. Ruano\",\"doi\":\"10.1109/IJCNN.2006.246919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the basic aspects of some neural networks is their attempt to approximate as much as possible their biological counterparts. The goal is to achieve a simple and robust network, easy to comprehend and capable of simulating the human brain at a computational level. This paper presents improvements to the Spikepro algorithm, by introducing a new encoding scheme, and illustrate the application of the Levenberg Marquardt algorithm to this third generation of neural network\",\"PeriodicalId\":145719,\"journal\":{\"name\":\"2005 International Conference on Neural Networks and Brain\",\"volume\":\"54 67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 International Conference on Neural Networks and Brain\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2006.246919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 International Conference on Neural Networks and Brain","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2006.246919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

一些神经网络的一个基本方面是它们试图尽可能地近似它们的生物对应物。目标是实现一个简单而强大的网络,易于理解,能够在计算水平上模拟人类大脑。本文通过引入一种新的编码方案,对Spikepro算法进行了改进,并举例说明了Levenberg Marquardt算法在第三代神经网络中的应用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Levenberg-Marquardt method to the training of spiking neural networks
One of the basic aspects of some neural networks is their attempt to approximate as much as possible their biological counterparts. The goal is to achieve a simple and robust network, easy to comprehend and capable of simulating the human brain at a computational level. This paper presents improvements to the Spikepro algorithm, by introducing a new encoding scheme, and illustrate the application of the Levenberg Marquardt algorithm to this third generation of neural network
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Levenberg-Marquardt method to the training of spiking neural networks Design and Realization of a Meaningful Digital Watermarking Algorithm Based on RBF Neural Network* Multiscale Feature Extraction of Finger-Vein Patterns Based on Wavelet and Local Interconnection Structure Neural Network Connecting Brains and Robots by Computational Theories Finding Hidden Factors in Large Spatiotemporal Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1