{"title":"激光微加工高频超声阵列","authors":"M. Lukacs, M. Sayer, G. Lockwood, S. Foster","doi":"10.1109/ULTSYM.1999.849214","DOIUrl":null,"url":null,"abstract":"Piezoelectric ceramics have been patterned by means of laser micromachining to create ultrasonic arrays resonating in the frequency range of 35-45 MHz. The Lumonics PM-844 excimer laser with a KrF gas mixture (248 nm) has been used to micromachine trenches with a width to depth aspect ratio of up to 1:5. By using a projection etch approach, the large aperture of the excimer laser is used to simultaneously ablate the features of a complex geometrical pattern. Pre-poled ceramic structures >20 /spl mu/m wide and >35 /spl mu/m thick have been cut and validated with SEM images. The dielectric, piezoelectric and acoustic properties have been evaluated using an impedance analyser and pulse-echo techniques.","PeriodicalId":339424,"journal":{"name":"1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Laser micromachined high frequency ultrasonic arrays\",\"authors\":\"M. Lukacs, M. Sayer, G. Lockwood, S. Foster\",\"doi\":\"10.1109/ULTSYM.1999.849214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Piezoelectric ceramics have been patterned by means of laser micromachining to create ultrasonic arrays resonating in the frequency range of 35-45 MHz. The Lumonics PM-844 excimer laser with a KrF gas mixture (248 nm) has been used to micromachine trenches with a width to depth aspect ratio of up to 1:5. By using a projection etch approach, the large aperture of the excimer laser is used to simultaneously ablate the features of a complex geometrical pattern. Pre-poled ceramic structures >20 /spl mu/m wide and >35 /spl mu/m thick have been cut and validated with SEM images. The dielectric, piezoelectric and acoustic properties have been evaluated using an impedance analyser and pulse-echo techniques.\",\"PeriodicalId\":339424,\"journal\":{\"name\":\"1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.1999.849214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.1999.849214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Laser micromachined high frequency ultrasonic arrays
Piezoelectric ceramics have been patterned by means of laser micromachining to create ultrasonic arrays resonating in the frequency range of 35-45 MHz. The Lumonics PM-844 excimer laser with a KrF gas mixture (248 nm) has been used to micromachine trenches with a width to depth aspect ratio of up to 1:5. By using a projection etch approach, the large aperture of the excimer laser is used to simultaneously ablate the features of a complex geometrical pattern. Pre-poled ceramic structures >20 /spl mu/m wide and >35 /spl mu/m thick have been cut and validated with SEM images. The dielectric, piezoelectric and acoustic properties have been evaluated using an impedance analyser and pulse-echo techniques.