D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Comer, D. Meschede
{"title":"走向冷原子的确定性来源","authors":"D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Comer, D. Meschede","doi":"10.1109/IQEC.2000.908140","DOIUrl":null,"url":null,"abstract":"The interest in optical dipole traps as an elegant and simple way to store laser-cooled neutral atoms has rapidly increased. Far-off-resonance optical dipole traps can confine atoms in all ground states for a long time with a very small ground state relaxation time. In contrast to previous work, the magneto-optical trap presented here describes experiments performed with a few atoms, with the atom number ranging from 1 to 10. The precise control of a deterministic number of atoms is crucial in many experiments, e.g. in cavity QED and quantum information processing.","PeriodicalId":267372,"journal":{"name":"Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Towards a deterministic source of cold atoms\",\"authors\":\"D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Comer, D. Meschede\",\"doi\":\"10.1109/IQEC.2000.908140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interest in optical dipole traps as an elegant and simple way to store laser-cooled neutral atoms has rapidly increased. Far-off-resonance optical dipole traps can confine atoms in all ground states for a long time with a very small ground state relaxation time. In contrast to previous work, the magneto-optical trap presented here describes experiments performed with a few atoms, with the atom number ranging from 1 to 10. The precise control of a deterministic number of atoms is crucial in many experiments, e.g. in cavity QED and quantum information processing.\",\"PeriodicalId\":267372,\"journal\":{\"name\":\"Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IQEC.2000.908140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IQEC.2000.908140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The interest in optical dipole traps as an elegant and simple way to store laser-cooled neutral atoms has rapidly increased. Far-off-resonance optical dipole traps can confine atoms in all ground states for a long time with a very small ground state relaxation time. In contrast to previous work, the magneto-optical trap presented here describes experiments performed with a few atoms, with the atom number ranging from 1 to 10. The precise control of a deterministic number of atoms is crucial in many experiments, e.g. in cavity QED and quantum information processing.