使用解纠缠变分自编码器的可解释心电拍嵌入

T. V. Steenkiste, D. Deschrijver, T. Dhaene
{"title":"使用解纠缠变分自编码器的可解释心电拍嵌入","authors":"T. V. Steenkiste, D. Deschrijver, T. Dhaene","doi":"10.1109/CBMS.2019.00081","DOIUrl":null,"url":null,"abstract":"Electrocardiogram signals are often used in medicine. An important aspect of analyzing this data is identifying and classifying the type of beat. This classification is often done through an automated algorithm. Recent advancements in neural networks and deep learning have led to high classification accuracy. However, adoption of neural network models into clinical practice is limited due to the black-box nature of the classification method. In this work, the use of variational auto encoders to learn human-interpretable encodings for the beat types is analyzed. It is demonstrated that using this method, an interpretable and explainable representation of normal and paced beats can be achieved with neural networks.","PeriodicalId":311634,"journal":{"name":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Interpretable ECG Beat Embedding using Disentangled Variational Auto-Encoders\",\"authors\":\"T. V. Steenkiste, D. Deschrijver, T. Dhaene\",\"doi\":\"10.1109/CBMS.2019.00081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrocardiogram signals are often used in medicine. An important aspect of analyzing this data is identifying and classifying the type of beat. This classification is often done through an automated algorithm. Recent advancements in neural networks and deep learning have led to high classification accuracy. However, adoption of neural network models into clinical practice is limited due to the black-box nature of the classification method. In this work, the use of variational auto encoders to learn human-interpretable encodings for the beat types is analyzed. It is demonstrated that using this method, an interpretable and explainable representation of normal and paced beats can be achieved with neural networks.\",\"PeriodicalId\":311634,\"journal\":{\"name\":\"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2019.00081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2019.00081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

心电图信号常用于医学。分析这些数据的一个重要方面是识别和分类节拍的类型。这种分类通常是通过自动算法完成的。神经网络和深度学习的最新进展导致了高分类精度。然而,由于分类方法的黑箱性质,神经网络模型在临床实践中的应用受到限制。在这项工作中,分析了使用变分自动编码器来学习节拍类型的人类可解释编码。结果表明,使用这种方法,可以用神经网络实现正常和有节奏节拍的可解释和可解释的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interpretable ECG Beat Embedding using Disentangled Variational Auto-Encoders
Electrocardiogram signals are often used in medicine. An important aspect of analyzing this data is identifying and classifying the type of beat. This classification is often done through an automated algorithm. Recent advancements in neural networks and deep learning have led to high classification accuracy. However, adoption of neural network models into clinical practice is limited due to the black-box nature of the classification method. In this work, the use of variational auto encoders to learn human-interpretable encodings for the beat types is analyzed. It is demonstrated that using this method, an interpretable and explainable representation of normal and paced beats can be achieved with neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysing the Performance of a Real-Time Healthcare 4.0 System using Shared Frailty Time to Event Models Performance of Data Enhancements and Training Optimization for Neural Network: A Polyp Detection Case Study I Know How you Feel Now, and Here's why!: Demystifying Time-Continuous High Resolution Text-Based Affect Predictions in the Wild Identifying Diabetic Retinopathy from OCT Images using Deep Transfer Learning with Artificial Neural Networks Towards an Analysis of Post-Transcriptional Gene Regulation in Psoriasis via microRNAs using Machine Learning Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1