基于图像放大技术的PCA在人脸识别中的应用

M. K. Halidu, P. B. Zadeh, A. S. Akbari, R. Behringer
{"title":"基于图像放大技术的PCA在人脸识别中的应用","authors":"M. K. Halidu, P. B. Zadeh, A. S. Akbari, R. Behringer","doi":"10.1109/MECO.2019.8760162","DOIUrl":null,"url":null,"abstract":"Face recognition has become a field of interest in many applications such as security and entertainments. In surveillance system, the quality of the recoded footage is sometimes insufficient due to the distance and angle of the camera from the scene. This causes the object of interest, e.g. the face of a person in the scene to be of low resolution, which increases the difficulty in recognition process. Image resolution enhancement is a potential solution for enlarging low-resolution images for real time face recognition. An enlarged image is then compared to available database of images to either identify or verify the individuals. However, the optimal performance of face recognition techniques when various image enlargement methods have been applied to them has not been investigated. In this research, the performance of PCA based face recognition method, with the three most well-known image enlargement techniques (Nearest Neighbour, Bilinear, Bicubic) is investigated. First, an input image is down sampled to six different resolutions. The down-sampled image is then enlarged to its original size using the three named image enlargement techniques. The enlarged image is then input to a PCA face recognition system for the recognition process. The simulation results using images from the SCFace database show that PCA based face recognition illustrates superior results when input images enlarged using Nearest Neighbour technique, while the performance of Bicubic and Bilinear techniques is slightly lower than Nearest Neighbour method.","PeriodicalId":141324,"journal":{"name":"2019 8th Mediterranean Conference on Embedded Computing (MECO)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"PCA in the context of Face Recognition with the Image Enlargement Techniques\",\"authors\":\"M. K. Halidu, P. B. Zadeh, A. S. Akbari, R. Behringer\",\"doi\":\"10.1109/MECO.2019.8760162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face recognition has become a field of interest in many applications such as security and entertainments. In surveillance system, the quality of the recoded footage is sometimes insufficient due to the distance and angle of the camera from the scene. This causes the object of interest, e.g. the face of a person in the scene to be of low resolution, which increases the difficulty in recognition process. Image resolution enhancement is a potential solution for enlarging low-resolution images for real time face recognition. An enlarged image is then compared to available database of images to either identify or verify the individuals. However, the optimal performance of face recognition techniques when various image enlargement methods have been applied to them has not been investigated. In this research, the performance of PCA based face recognition method, with the three most well-known image enlargement techniques (Nearest Neighbour, Bilinear, Bicubic) is investigated. First, an input image is down sampled to six different resolutions. The down-sampled image is then enlarged to its original size using the three named image enlargement techniques. The enlarged image is then input to a PCA face recognition system for the recognition process. The simulation results using images from the SCFace database show that PCA based face recognition illustrates superior results when input images enlarged using Nearest Neighbour technique, while the performance of Bicubic and Bilinear techniques is slightly lower than Nearest Neighbour method.\",\"PeriodicalId\":141324,\"journal\":{\"name\":\"2019 8th Mediterranean Conference on Embedded Computing (MECO)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 8th Mediterranean Conference on Embedded Computing (MECO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MECO.2019.8760162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th Mediterranean Conference on Embedded Computing (MECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECO.2019.8760162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

人脸识别已成为安全和娱乐等许多应用领域的兴趣领域。在监控系统中,由于摄像机与现场的距离和角度不同,有时会导致编码后的录像质量不足。这会导致感兴趣的对象(例如场景中的人脸)的分辨率较低,从而增加识别过程的难度。图像分辨率增强是放大低分辨率图像进行实时人脸识别的潜在解决方案。然后将放大的图像与可用的图像数据库进行比较,以识别或验证个体。然而,在各种图像放大方法的应用下,人脸识别技术的最佳性能尚未得到研究。在本研究中,研究了基于PCA的人脸识别方法在三种最著名的图像放大技术(最近邻、双线性、双三次)下的性能。首先,输入图像被采样到六个不同的分辨率。然后使用三种命名的图像放大技术将下采样图像放大到其原始尺寸。然后将放大后的图像输入到PCA人脸识别系统进行识别过程。利用SCFace数据库中的图像进行仿真,结果表明,当输入图像放大时,采用最近邻技术的PCA人脸识别效果较好,而双三次和双线性技术的识别效果略低于最近邻方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PCA in the context of Face Recognition with the Image Enlargement Techniques
Face recognition has become a field of interest in many applications such as security and entertainments. In surveillance system, the quality of the recoded footage is sometimes insufficient due to the distance and angle of the camera from the scene. This causes the object of interest, e.g. the face of a person in the scene to be of low resolution, which increases the difficulty in recognition process. Image resolution enhancement is a potential solution for enlarging low-resolution images for real time face recognition. An enlarged image is then compared to available database of images to either identify or verify the individuals. However, the optimal performance of face recognition techniques when various image enlargement methods have been applied to them has not been investigated. In this research, the performance of PCA based face recognition method, with the three most well-known image enlargement techniques (Nearest Neighbour, Bilinear, Bicubic) is investigated. First, an input image is down sampled to six different resolutions. The down-sampled image is then enlarged to its original size using the three named image enlargement techniques. The enlarged image is then input to a PCA face recognition system for the recognition process. The simulation results using images from the SCFace database show that PCA based face recognition illustrates superior results when input images enlarged using Nearest Neighbour technique, while the performance of Bicubic and Bilinear techniques is slightly lower than Nearest Neighbour method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
E-Learning Tool to Enhance Technological Pedagogical Content Knowledge A scalable Echo State Networks hardware generator for embedded systems using high-level synthesis Exploiting Task-based Parallelism in Application Loops E-health Card Information System: Case Study Health Insurance Fund of Montenegro Smart Universal Multifunctional Digital Terminal/Portal Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1