{"title":"聚类语言对象:人工和自动程序的比较","authors":"Ilaria Colucci, Elisabetta Jezek, V. Baisa","doi":"10.4000/books.aaccademia.8403","DOIUrl":null,"url":null,"abstract":"As highlighted by Pustejovsky (1995, 2002), the semantics of each verb is determined by the totality of its complementation patterns. Arguments play in fact a fundamental role in verb meaning and verbal polysemy, thanks to the sense co-composition principle between verb and argument. For this reason, clustering of lexical items filling the Object slot of a verb is believed to bring to surface relevant information about verbal meaning and the verb-Objects relation. The paper presents the results of an experiment comparing the automatic clustering of direct Objects operated by the agglomerative hierarchical algorithm of the Sketch Engine corpus tool with the manual clustering of direct Objects carried out in the T-PAS resource. Cluster analysis is here used to improve the semantic quality of automatic clusters against expert human intuition and as an investigation tool of phenomena intrinsic to semantic selection of verbs and the construction of verb senses in context.","PeriodicalId":300279,"journal":{"name":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","volume":"91 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustering verbal Objects: Manual and Automatic Procedures Compared\",\"authors\":\"Ilaria Colucci, Elisabetta Jezek, V. Baisa\",\"doi\":\"10.4000/books.aaccademia.8403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As highlighted by Pustejovsky (1995, 2002), the semantics of each verb is determined by the totality of its complementation patterns. Arguments play in fact a fundamental role in verb meaning and verbal polysemy, thanks to the sense co-composition principle between verb and argument. For this reason, clustering of lexical items filling the Object slot of a verb is believed to bring to surface relevant information about verbal meaning and the verb-Objects relation. The paper presents the results of an experiment comparing the automatic clustering of direct Objects operated by the agglomerative hierarchical algorithm of the Sketch Engine corpus tool with the manual clustering of direct Objects carried out in the T-PAS resource. Cluster analysis is here used to improve the semantic quality of automatic clusters against expert human intuition and as an investigation tool of phenomena intrinsic to semantic selection of verbs and the construction of verb senses in context.\",\"PeriodicalId\":300279,\"journal\":{\"name\":\"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020\",\"volume\":\"91 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4000/books.aaccademia.8403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/books.aaccademia.8403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Clustering verbal Objects: Manual and Automatic Procedures Compared
As highlighted by Pustejovsky (1995, 2002), the semantics of each verb is determined by the totality of its complementation patterns. Arguments play in fact a fundamental role in verb meaning and verbal polysemy, thanks to the sense co-composition principle between verb and argument. For this reason, clustering of lexical items filling the Object slot of a verb is believed to bring to surface relevant information about verbal meaning and the verb-Objects relation. The paper presents the results of an experiment comparing the automatic clustering of direct Objects operated by the agglomerative hierarchical algorithm of the Sketch Engine corpus tool with the manual clustering of direct Objects carried out in the T-PAS resource. Cluster analysis is here used to improve the semantic quality of automatic clusters against expert human intuition and as an investigation tool of phenomena intrinsic to semantic selection of verbs and the construction of verb senses in context.