节点生成的生成模型

Boyu Zhang, Xin Wang, Kai Liu
{"title":"节点生成的生成模型","authors":"Boyu Zhang, Xin Wang, Kai Liu","doi":"10.1145/3404555.3404599","DOIUrl":null,"url":null,"abstract":"We present a generative model applied to graph-structured data for node generation by incorporating the graph convolutional architecture and semi-supervised learning with variational auto-encoder. This idea is motivated by successful applications of deep generative models for images and speeches. However, when applied to graph-structured data, especially social network data, existing deep generative models usually don't work: these models can not learn underlying distributions of social network data effectively. In order to address this problem, we construct a deep generative model, using architectures and techniques that prove to be effective for modelling network data in practice. Experimental results show that our model can successfully learn the underlying distribution from the social network dataset, and generate reasonable nodes, which can be altered by varying latent variables. This provides us a way to study social network data in the same way we study image data.","PeriodicalId":220526,"journal":{"name":"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative Model for Node Generation\",\"authors\":\"Boyu Zhang, Xin Wang, Kai Liu\",\"doi\":\"10.1145/3404555.3404599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a generative model applied to graph-structured data for node generation by incorporating the graph convolutional architecture and semi-supervised learning with variational auto-encoder. This idea is motivated by successful applications of deep generative models for images and speeches. However, when applied to graph-structured data, especially social network data, existing deep generative models usually don't work: these models can not learn underlying distributions of social network data effectively. In order to address this problem, we construct a deep generative model, using architectures and techniques that prove to be effective for modelling network data in practice. Experimental results show that our model can successfully learn the underlying distribution from the social network dataset, and generate reasonable nodes, which can be altered by varying latent variables. This provides us a way to study social network data in the same way we study image data.\",\"PeriodicalId\":220526,\"journal\":{\"name\":\"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3404555.3404599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3404555.3404599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过结合图卷积结构和带变分自编码器的半监督学习,提出了一种用于图结构数据节点生成的生成模型。这个想法是由图像和演讲的深度生成模型的成功应用所激发的。然而,当应用于图结构数据,特别是社交网络数据时,现有的深度生成模型通常不起作用:这些模型不能有效地学习社交网络数据的底层分布。为了解决这个问题,我们构建了一个深度生成模型,使用的架构和技术在实践中被证明是有效的网络数据建模。实验结果表明,我们的模型能够成功地从社交网络数据集中学习到底层分布,并生成合理的节点,这些节点可以通过改变潜在变量来改变。这为我们提供了一种研究社交网络数据的方法,就像我们研究图像数据一样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generative Model for Node Generation
We present a generative model applied to graph-structured data for node generation by incorporating the graph convolutional architecture and semi-supervised learning with variational auto-encoder. This idea is motivated by successful applications of deep generative models for images and speeches. However, when applied to graph-structured data, especially social network data, existing deep generative models usually don't work: these models can not learn underlying distributions of social network data effectively. In order to address this problem, we construct a deep generative model, using architectures and techniques that prove to be effective for modelling network data in practice. Experimental results show that our model can successfully learn the underlying distribution from the social network dataset, and generate reasonable nodes, which can be altered by varying latent variables. This provides us a way to study social network data in the same way we study image data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
mRNA Big Data Analysis of Hepatoma Carcinoma Between Different Genders Generalization or Instantiation?: Estimating the Relative Abstractness between Images and Text Auxiliary Edge Detection for Semantic Image Segmentation Intrusion Detection of Abnormal Objects for Railway Scenes Using Infrared Images Multi-Tenant Machine Learning Platform Based on Kubernetes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1