心脏杂音检测与分类的机器学习方法

A. Levin, A. Ragazzi, S. Szot, T. Ning
{"title":"心脏杂音检测与分类的机器学习方法","authors":"A. Levin, A. Ragazzi, S. Szot, T. Ning","doi":"10.1109/CISP-BMEI51763.2020.9263528","DOIUrl":null,"url":null,"abstract":"This paper presents a heart murmur detection and classification approach via machine learning. We extracted heart sound and murmur features that are of diagnostic importance and developed additional 16 features that are not perceivable by human ears but are valuable to improve murmur classification accuracy. We examined and compared the classification performance of supervised machine learning with k-nearest neighbor (KNN) and support vector machine (SVM) algorithms. We put together a test repertoire having more than 450 heart sound and murmur episodes to evaluate the performance of murmur classification using cross-validation of 80-20 and 90-10 splits. As clearly demonstrated in our evaluation, the specific set of features chosen in our study resulted in accurate classification consistently exceeding 90% for both classifiers.","PeriodicalId":346757,"journal":{"name":"2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Machine Learning Approach to Heart Murmur Detection and Classification\",\"authors\":\"A. Levin, A. Ragazzi, S. Szot, T. Ning\",\"doi\":\"10.1109/CISP-BMEI51763.2020.9263528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a heart murmur detection and classification approach via machine learning. We extracted heart sound and murmur features that are of diagnostic importance and developed additional 16 features that are not perceivable by human ears but are valuable to improve murmur classification accuracy. We examined and compared the classification performance of supervised machine learning with k-nearest neighbor (KNN) and support vector machine (SVM) algorithms. We put together a test repertoire having more than 450 heart sound and murmur episodes to evaluate the performance of murmur classification using cross-validation of 80-20 and 90-10 splits. As clearly demonstrated in our evaluation, the specific set of features chosen in our study resulted in accurate classification consistently exceeding 90% for both classifiers.\",\"PeriodicalId\":346757,\"journal\":{\"name\":\"2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP-BMEI51763.2020.9263528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI51763.2020.9263528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于机器学习的心脏杂音检测与分类方法。我们提取了具有诊断重要性的心音和杂音特征,并开发了另外16个人耳无法感知但对提高杂音分类准确性有价值的特征。我们检查并比较了监督机器学习与k近邻(KNN)和支持向量机(SVM)算法的分类性能。我们收集了超过450例心音和杂音发作的测试曲目,使用80-20和90-10分割的交叉验证来评估杂音分类的性能。在我们的评估中清楚地表明,在我们的研究中选择的特定特征集导致两个分类器的分类准确率始终超过90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Machine Learning Approach to Heart Murmur Detection and Classification
This paper presents a heart murmur detection and classification approach via machine learning. We extracted heart sound and murmur features that are of diagnostic importance and developed additional 16 features that are not perceivable by human ears but are valuable to improve murmur classification accuracy. We examined and compared the classification performance of supervised machine learning with k-nearest neighbor (KNN) and support vector machine (SVM) algorithms. We put together a test repertoire having more than 450 heart sound and murmur episodes to evaluate the performance of murmur classification using cross-validation of 80-20 and 90-10 splits. As clearly demonstrated in our evaluation, the specific set of features chosen in our study resulted in accurate classification consistently exceeding 90% for both classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Network Attack Detection based on Domain Attack Behavior Analysis Feature selection of time series based on reinforcement learning An Improved Double-Layer Kalman Filter Attitude Algorithm For Motion Capture System Probability Boltzmann Machine Network for Face Detection on Video Evolutionary Optimized Multiple Instance Concept Learning for Beat-to-Beat Heart Rate Estimation from Electrocardiograms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1