{"title":"IEC61850协议在HIL微电网试验台上的互操作性分析","authors":"M. Hemmati, H. Palahalli, G. Gruosso, S. Grillo","doi":"10.1109/SmartGridComm51999.2021.9632327","DOIUrl":null,"url":null,"abstract":"Expansion of distributed energy resources (DERs) leads to more complex and interconnected networks in smart grids. This increased the requirement of fast and standardized information exchanges for stable, resilient, and reliable operations in microgrids. To extend interoperability, modern power grids utilize a sophisticated network of Intelligent Electronic Devices (IEDs). These devices are able to communicate with one another using the IEC-61850 communication protocol. In this article, one particular architecture to inspect Generic Object Oriented Substation Event (GOOSE) services is proposed. phase one of the project resides in design details of an assumed micro- grid simulation as the testbed in Typhoon HIL, and modelling of the characteristics of a generic IED running on a Hardware-In-the-Loop device. While phase two of the project involves the HIL test setup as a novel methodology to approach the communication scenarios of mentioned commercial relays. one particular overload scenario is stated in more detail to investigate the performance of the protection mechanisms and GOOSE services emulated in the IED.","PeriodicalId":378884,"journal":{"name":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Interoperability analysis of IEC61850 protocol using an emulated IED in a HIL microgrid testbed\",\"authors\":\"M. Hemmati, H. Palahalli, G. Gruosso, S. Grillo\",\"doi\":\"10.1109/SmartGridComm51999.2021.9632327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Expansion of distributed energy resources (DERs) leads to more complex and interconnected networks in smart grids. This increased the requirement of fast and standardized information exchanges for stable, resilient, and reliable operations in microgrids. To extend interoperability, modern power grids utilize a sophisticated network of Intelligent Electronic Devices (IEDs). These devices are able to communicate with one another using the IEC-61850 communication protocol. In this article, one particular architecture to inspect Generic Object Oriented Substation Event (GOOSE) services is proposed. phase one of the project resides in design details of an assumed micro- grid simulation as the testbed in Typhoon HIL, and modelling of the characteristics of a generic IED running on a Hardware-In-the-Loop device. While phase two of the project involves the HIL test setup as a novel methodology to approach the communication scenarios of mentioned commercial relays. one particular overload scenario is stated in more detail to investigate the performance of the protection mechanisms and GOOSE services emulated in the IED.\",\"PeriodicalId\":378884,\"journal\":{\"name\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm51999.2021.9632327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm51999.2021.9632327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interoperability analysis of IEC61850 protocol using an emulated IED in a HIL microgrid testbed
Expansion of distributed energy resources (DERs) leads to more complex and interconnected networks in smart grids. This increased the requirement of fast and standardized information exchanges for stable, resilient, and reliable operations in microgrids. To extend interoperability, modern power grids utilize a sophisticated network of Intelligent Electronic Devices (IEDs). These devices are able to communicate with one another using the IEC-61850 communication protocol. In this article, one particular architecture to inspect Generic Object Oriented Substation Event (GOOSE) services is proposed. phase one of the project resides in design details of an assumed micro- grid simulation as the testbed in Typhoon HIL, and modelling of the characteristics of a generic IED running on a Hardware-In-the-Loop device. While phase two of the project involves the HIL test setup as a novel methodology to approach the communication scenarios of mentioned commercial relays. one particular overload scenario is stated in more detail to investigate the performance of the protection mechanisms and GOOSE services emulated in the IED.