卷积神经网络在膀胱癌CT图像诊断识别中的应用

I. Lorencin, Klara Smolić, Sandi Baressi Segota, N. Andelic, D. Štifanić, J. Musulin, D. Markić, J. Španjol, Z. Car
{"title":"卷积神经网络在膀胱癌CT图像诊断识别中的应用","authors":"I. Lorencin, Klara Smolić, Sandi Baressi Segota, N. Andelic, D. Štifanić, J. Musulin, D. Markić, J. Španjol, Z. Car","doi":"10.1109/BIBE52308.2021.9635446","DOIUrl":null,"url":null,"abstract":"In this paper, an approach for urinary bladder cancer diagnosis from computer tomography (CT) images based on the application of convolutional neural networks (CNN) is presented. The image data set that consists of three main parts (frontal, horizontal, and sagittal plane) is used. In order to classify images, pre-defined CNN architectures are used. CNN performances are evaluated by using 5-fold cross-validation procedure that gives information about classification and generalization performances. From the presented results, it can be noticed that higher performances are achieved if more complex CNN architectures are used. Higher performances can be noticed regardless of a plane in which images are captured. An increase in performances can be noticed in both classification and generalization context.","PeriodicalId":343724,"journal":{"name":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"64 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilization of Convolutional Neural Networks for Urinary Bladder Cancer Diagnosis Recognition From CT Imagery\",\"authors\":\"I. Lorencin, Klara Smolić, Sandi Baressi Segota, N. Andelic, D. Štifanić, J. Musulin, D. Markić, J. Španjol, Z. Car\",\"doi\":\"10.1109/BIBE52308.2021.9635446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an approach for urinary bladder cancer diagnosis from computer tomography (CT) images based on the application of convolutional neural networks (CNN) is presented. The image data set that consists of three main parts (frontal, horizontal, and sagittal plane) is used. In order to classify images, pre-defined CNN architectures are used. CNN performances are evaluated by using 5-fold cross-validation procedure that gives information about classification and generalization performances. From the presented results, it can be noticed that higher performances are achieved if more complex CNN architectures are used. Higher performances can be noticed regardless of a plane in which images are captured. An increase in performances can be noticed in both classification and generalization context.\",\"PeriodicalId\":343724,\"journal\":{\"name\":\"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"64 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE52308.2021.9635446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE52308.2021.9635446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于卷积神经网络(CNN)的计算机断层扫描(CT)图像诊断膀胱癌的方法。图像数据集由三个主要部分(正面、水平和矢状面)组成。为了对图像进行分类,使用了预定义的CNN架构。CNN的性能通过使用5倍交叉验证程序进行评估,该程序给出了有关分类和泛化性能的信息。从给出的结果可以看出,如果使用更复杂的CNN架构,则可以获得更高的性能。无论在哪个平面上捕获图像,都可以注意到更高的性能。在分类和泛化上下文中都可以注意到性能的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Utilization of Convolutional Neural Networks for Urinary Bladder Cancer Diagnosis Recognition From CT Imagery
In this paper, an approach for urinary bladder cancer diagnosis from computer tomography (CT) images based on the application of convolutional neural networks (CNN) is presented. The image data set that consists of three main parts (frontal, horizontal, and sagittal plane) is used. In order to classify images, pre-defined CNN architectures are used. CNN performances are evaluated by using 5-fold cross-validation procedure that gives information about classification and generalization performances. From the presented results, it can be noticed that higher performances are achieved if more complex CNN architectures are used. Higher performances can be noticed regardless of a plane in which images are captured. An increase in performances can be noticed in both classification and generalization context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural, antimicrobial, and molecular docking study of 3-(1-(4-hydroxyphenyl)amino) ethylidene)chroman-2,4-dione and its corresponding Pd complex Multiple-Activation Parallel Convolution Network in Combination with t-SNE for the Classification of Mild Cognitive Impairment Analyzing the Impact of Resampling Approaches on Chest X-Ray Images for COVID-19 Identification in a Local Hierarchical Classification Scenario Analysis of knee joint forces in different types of jumps of top futsal players at the beginning and at the end of the preparation period Design and evaluation of a noninvasive tongue-computer interface for individuals with severe disabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1