平面微加工硅电极皮层刺激的有限元分析

R. Field, Maysam Ghovanloo
{"title":"平面微加工硅电极皮层刺激的有限元分析","authors":"R. Field, Maysam Ghovanloo","doi":"10.1109/MMB.2006.251533","DOIUrl":null,"url":null,"abstract":"This paper describes a three dimensional (3D) finite element model of micromachined stimulating microelectrode arrays for cortical stimulation. These micromachined probes, known as Michigan probes, are lithographically defined in geometry and fabricated though mostly standard silicon processing technology. However, the fabrication process requires the highly conductive boron-doped shanks, which provide mechanical support for the electrode array, to be grounded especially in active electrodes that incorporate integrated circuits on the same chip. We have examined the effects of grounding this portion (body) of the electrode arrays using finite element analysis (FEA) and drawn a few conclusions about their design. Further, using information gained from our FEA models, we evaluate the current distribution and volume of the excited tissue in a proposed design that would increase the density of electrodes in a given volume and provides greater precision for targeted stimulation","PeriodicalId":170356,"journal":{"name":"2006 International Conference on Microtechnologies in Medicine and Biology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite Element Analysis of Planar Micromachined Silicon Electrodes for Cortical Stimulation\",\"authors\":\"R. Field, Maysam Ghovanloo\",\"doi\":\"10.1109/MMB.2006.251533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a three dimensional (3D) finite element model of micromachined stimulating microelectrode arrays for cortical stimulation. These micromachined probes, known as Michigan probes, are lithographically defined in geometry and fabricated though mostly standard silicon processing technology. However, the fabrication process requires the highly conductive boron-doped shanks, which provide mechanical support for the electrode array, to be grounded especially in active electrodes that incorporate integrated circuits on the same chip. We have examined the effects of grounding this portion (body) of the electrode arrays using finite element analysis (FEA) and drawn a few conclusions about their design. Further, using information gained from our FEA models, we evaluate the current distribution and volume of the excited tissue in a proposed design that would increase the density of electrodes in a given volume and provides greater precision for targeted stimulation\",\"PeriodicalId\":170356,\"journal\":{\"name\":\"2006 International Conference on Microtechnologies in Medicine and Biology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Conference on Microtechnologies in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMB.2006.251533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Microtechnologies in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMB.2006.251533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了用于皮层刺激的微机械微电极阵列的三维有限元模型。这些微机械探针,被称为密歇根探针,在几何上是光刻定义的,并且通过大多数标准的硅加工技术制造。然而,制造过程需要高导电性的掺硼柄,为电极阵列提供机械支撑,特别是在同一芯片上集成电路的有源电极中接地。我们使用有限元分析(FEA)检查了电极阵列的这部分(主体)接地的影响,并得出了一些关于其设计的结论。此外,利用从我们的FEA模型中获得的信息,我们在提出的设计中评估了受激组织的电流分布和体积,这将增加给定体积内电极的密度,并为目标刺激提供更高的精度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finite Element Analysis of Planar Micromachined Silicon Electrodes for Cortical Stimulation
This paper describes a three dimensional (3D) finite element model of micromachined stimulating microelectrode arrays for cortical stimulation. These micromachined probes, known as Michigan probes, are lithographically defined in geometry and fabricated though mostly standard silicon processing technology. However, the fabrication process requires the highly conductive boron-doped shanks, which provide mechanical support for the electrode array, to be grounded especially in active electrodes that incorporate integrated circuits on the same chip. We have examined the effects of grounding this portion (body) of the electrode arrays using finite element analysis (FEA) and drawn a few conclusions about their design. Further, using information gained from our FEA models, we evaluate the current distribution and volume of the excited tissue in a proposed design that would increase the density of electrodes in a given volume and provides greater precision for targeted stimulation
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PDF Not Yet Available In IEEE Xplore Two-Compartments Microbioreactor with Integrated Magnetic Stirrer Pump for Measurement of Transmembrane Transport of Caco-2 Cells 3D Microelectrodes for Coulometric Screening in Microfabricated Lab-on-a-Chip Devices A Silicon-Based Single-Cell Electroporation Microchip for Gene Transfer Adsorption-induced inactivation of heavy meromyosin on polymer surfaces imposes effective drag force on sliding actin filaments in vitro
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1