{"title":"从经典力学推导量子动力学方程的一种方法","authors":"Hua Ma","doi":"10.11648/j.ajpa.20170506.11","DOIUrl":null,"url":null,"abstract":"Based on the operator theories and Hamiltonian canonical equation, an operator based quantum dynamics equation is established, which has the same effect as the Hamiltonian equation in describing the state evolution of quantized dynamical systems. As the reasonable verification of this equation, Schrodinger equation can be derived theoretically, and the variational principle properties of quantum mechanics are revealed. This work will help to promote the development of quantum theory and to perfect the axiomatic system of quantum mechanics.","PeriodicalId":329149,"journal":{"name":"American Journal of Physics and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Method for Deriving Quantum Dynamic Equations from Classical Mechanics\",\"authors\":\"Hua Ma\",\"doi\":\"10.11648/j.ajpa.20170506.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the operator theories and Hamiltonian canonical equation, an operator based quantum dynamics equation is established, which has the same effect as the Hamiltonian equation in describing the state evolution of quantized dynamical systems. As the reasonable verification of this equation, Schrodinger equation can be derived theoretically, and the variational principle properties of quantum mechanics are revealed. This work will help to promote the development of quantum theory and to perfect the axiomatic system of quantum mechanics.\",\"PeriodicalId\":329149,\"journal\":{\"name\":\"American Journal of Physics and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Physics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/j.ajpa.20170506.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.ajpa.20170506.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Method for Deriving Quantum Dynamic Equations from Classical Mechanics
Based on the operator theories and Hamiltonian canonical equation, an operator based quantum dynamics equation is established, which has the same effect as the Hamiltonian equation in describing the state evolution of quantized dynamical systems. As the reasonable verification of this equation, Schrodinger equation can be derived theoretically, and the variational principle properties of quantum mechanics are revealed. This work will help to promote the development of quantum theory and to perfect the axiomatic system of quantum mechanics.