2016语音转换挑战赛中系统的多维缩放

M. Wester, Zhizheng Wu, J. Yamagishi
{"title":"2016语音转换挑战赛中系统的多维缩放","authors":"M. Wester, Zhizheng Wu, J. Yamagishi","doi":"10.21437/SSW.2016-7","DOIUrl":null,"url":null,"abstract":"This study investigates how listeners judge the similarity of voice converted voices using a talker discrimination task. The data used is from the Voice Conversion Challenge 2016. 17 participants from around the world took part in building voice converted voices from a shared data set of source and target speakers. This paper describes the evaluation of similarity for four of the source-target pairs (two intra-gender and two cross-gender) in more detail. Multidimensional scaling was performed to illustrate where each system was perceived to be in an acoustic space compared to the source and target speakers and to each other.","PeriodicalId":340820,"journal":{"name":"Speech Synthesis Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Multidimensional scaling of systems in the Voice Conversion Challenge 2016\",\"authors\":\"M. Wester, Zhizheng Wu, J. Yamagishi\",\"doi\":\"10.21437/SSW.2016-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates how listeners judge the similarity of voice converted voices using a talker discrimination task. The data used is from the Voice Conversion Challenge 2016. 17 participants from around the world took part in building voice converted voices from a shared data set of source and target speakers. This paper describes the evaluation of similarity for four of the source-target pairs (two intra-gender and two cross-gender) in more detail. Multidimensional scaling was performed to illustrate where each system was perceived to be in an acoustic space compared to the source and target speakers and to each other.\",\"PeriodicalId\":340820,\"journal\":{\"name\":\"Speech Synthesis Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Speech Synthesis Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/SSW.2016-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Synthesis Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/SSW.2016-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本研究探讨了听者如何通过说话者辨别任务来判断声音转换后的声音的相似性。使用的数据来自2016年语音转换挑战赛。来自世界各地的17名参与者参与了从源和目标说话人的共享数据集建立语音转换语音的工作。本文更详细地描述了四种源-目标对(两种内性别和两种跨性别)的相似性评价。进行了多维缩放,以说明与源和目标扬声器以及彼此相比,每个系统在声学空间中的感知位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multidimensional scaling of systems in the Voice Conversion Challenge 2016
This study investigates how listeners judge the similarity of voice converted voices using a talker discrimination task. The data used is from the Voice Conversion Challenge 2016. 17 participants from around the world took part in building voice converted voices from a shared data set of source and target speakers. This paper describes the evaluation of similarity for four of the source-target pairs (two intra-gender and two cross-gender) in more detail. Multidimensional scaling was performed to illustrate where each system was perceived to be in an acoustic space compared to the source and target speakers and to each other.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Archiving pushed Inferences from Sensor Data Streams Parallel and cascaded deep neural networks for text-to-speech synthesis Merlin: An Open Source Neural Network Speech Synthesis System A Comparative Study of the Performance of HMM, DNN, and RNN based Speech Synthesis Systems Trained on Very Large Speaker-Dependent Corpora Nonaudible murmur enhancement based on statistical voice conversion and noise suppression with external noise monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1