基于Gbest引导布谷鸟搜索算法的IIR滤波器设计

Niloy Chakraborty, Adrika Mukherjee, Supriya Dhabal
{"title":"基于Gbest引导布谷鸟搜索算法的IIR滤波器设计","authors":"Niloy Chakraborty, Adrika Mukherjee, Supriya Dhabal","doi":"10.1109/ICCECE.2016.8009573","DOIUrl":null,"url":null,"abstract":"The design of IIR filter is a challenging task and this paper presents a design of IIR filter using Whale Optimisation Algorithm (WOA), Artificial Bee Colony (ABC) Algorithm, Cuckoo Search Algorithm (CSA) and Gbest Guided Cuckoo Search (GCS) Algorithm. A modified version of a recently developed meta-heuristic algorithm CSA is GCS, where some changes are implemented to make the algorithm faster and parameter independent. Simulation results from different experimental design cases (on the transfer function of 2nd, 3rd and 4th order respectively) affirm that GCS converges faster; furthermore, the computational time required is less than WOA, ABC and CSA. It is found that in the case of GCS, the computational time required for designed IIR filter using 2nd, 3rd and 4th order transfer functions are 0.00043 s., 0.00035 s and 0.0000569 s, every 100 iterations respectively.","PeriodicalId":414303,"journal":{"name":"2016 International Conference on Computer, Electrical & Communication Engineering (ICCECE)","volume":"102 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design of IIR filter using Gbest guided cuckoo search algorithm\",\"authors\":\"Niloy Chakraborty, Adrika Mukherjee, Supriya Dhabal\",\"doi\":\"10.1109/ICCECE.2016.8009573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of IIR filter is a challenging task and this paper presents a design of IIR filter using Whale Optimisation Algorithm (WOA), Artificial Bee Colony (ABC) Algorithm, Cuckoo Search Algorithm (CSA) and Gbest Guided Cuckoo Search (GCS) Algorithm. A modified version of a recently developed meta-heuristic algorithm CSA is GCS, where some changes are implemented to make the algorithm faster and parameter independent. Simulation results from different experimental design cases (on the transfer function of 2nd, 3rd and 4th order respectively) affirm that GCS converges faster; furthermore, the computational time required is less than WOA, ABC and CSA. It is found that in the case of GCS, the computational time required for designed IIR filter using 2nd, 3rd and 4th order transfer functions are 0.00043 s., 0.00035 s and 0.0000569 s, every 100 iterations respectively.\",\"PeriodicalId\":414303,\"journal\":{\"name\":\"2016 International Conference on Computer, Electrical & Communication Engineering (ICCECE)\",\"volume\":\"102 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Computer, Electrical & Communication Engineering (ICCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCECE.2016.8009573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Computer, Electrical & Communication Engineering (ICCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECE.2016.8009573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

IIR滤波器的设计是一项具有挑战性的任务,本文采用鲸鱼优化算法(WOA)、人工蜂群(ABC)算法、布谷鸟搜索算法(CSA)和Gbest Guided Cuckoo Search (GCS)算法设计了IIR滤波器。最近开发的元启发式算法CSA的修改版本是GCS,其中实现了一些更改以使算法更快且参数独立。不同实验设计案例(分别对二阶、三阶和四阶传递函数)的仿真结果表明,GCS收敛速度更快;与WOA、ABC和CSA相比,计算时间更短。研究发现,在GCS情况下,采用二阶、三阶和四阶传递函数设计的IIR滤波器每100次迭代所需的计算时间分别为0.00043 s、0.00035 s和0.0000569 s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of IIR filter using Gbest guided cuckoo search algorithm
The design of IIR filter is a challenging task and this paper presents a design of IIR filter using Whale Optimisation Algorithm (WOA), Artificial Bee Colony (ABC) Algorithm, Cuckoo Search Algorithm (CSA) and Gbest Guided Cuckoo Search (GCS) Algorithm. A modified version of a recently developed meta-heuristic algorithm CSA is GCS, where some changes are implemented to make the algorithm faster and parameter independent. Simulation results from different experimental design cases (on the transfer function of 2nd, 3rd and 4th order respectively) affirm that GCS converges faster; furthermore, the computational time required is less than WOA, ABC and CSA. It is found that in the case of GCS, the computational time required for designed IIR filter using 2nd, 3rd and 4th order transfer functions are 0.00043 s., 0.00035 s and 0.0000569 s, every 100 iterations respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A simulation based performance analysis of proactive, reactive and hybrid routing protocol Enhancement of optical absorption in Plasmonic thin film solar cell Task management of robot using cloud computing Study of the effect of air gap in segmented cylindrical dielectric resonator loaded monopole Model order reduction of high order LTI system using particle swarm optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1