基于双树小波变换的人脸识别

Alaa Eleyan, H. Demirel, H. Ozkaramanli
{"title":"基于双树小波变换的人脸识别","authors":"Alaa Eleyan, H. Demirel, H. Ozkaramanli","doi":"10.1109/ISSPIT.2008.4775675","DOIUrl":null,"url":null,"abstract":"This paper introduces a face recognition method based on the Dual-Tree Complex Wavelet Transform (DT-CWT), which is used to extract features from face images. DT-CWT uses similar kernels with Gabor wavelets and is a computationally cheaper way of extracting Gabor-like features. Principal Component Analysis (PCA) which is a linear dimensionality reduction technique, that attempts to represent data in lower dimensions, is used to perform the face recognition. The results demonstrate that using DT-CWT in the preprocessing phase and then applying PCA on the features extracted from the DT-CWT instead of raw face images, improves the recognition performance.","PeriodicalId":213756,"journal":{"name":"2008 IEEE International Symposium on Signal Processing and Information Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Face Recognition using Dual-Tree Wavelet Transform\",\"authors\":\"Alaa Eleyan, H. Demirel, H. Ozkaramanli\",\"doi\":\"10.1109/ISSPIT.2008.4775675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a face recognition method based on the Dual-Tree Complex Wavelet Transform (DT-CWT), which is used to extract features from face images. DT-CWT uses similar kernels with Gabor wavelets and is a computationally cheaper way of extracting Gabor-like features. Principal Component Analysis (PCA) which is a linear dimensionality reduction technique, that attempts to represent data in lower dimensions, is used to perform the face recognition. The results demonstrate that using DT-CWT in the preprocessing phase and then applying PCA on the features extracted from the DT-CWT instead of raw face images, improves the recognition performance.\",\"PeriodicalId\":213756,\"journal\":{\"name\":\"2008 IEEE International Symposium on Signal Processing and Information Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Signal Processing and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2008.4775675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2008.4775675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

介绍了一种基于双树复小波变换(DT-CWT)的人脸识别方法,该方法从人脸图像中提取特征。DT-CWT使用与Gabor小波相似的核,是一种计算成本更低的提取Gabor类特征的方法。主成分分析(PCA)是一种线性降维技术,它试图在较低的维度上表示数据,用于人脸识别。结果表明,在预处理阶段使用DT-CWT,然后对DT-CWT提取的特征进行主成分分析,而不是原始人脸图像,可以提高识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Face Recognition using Dual-Tree Wavelet Transform
This paper introduces a face recognition method based on the Dual-Tree Complex Wavelet Transform (DT-CWT), which is used to extract features from face images. DT-CWT uses similar kernels with Gabor wavelets and is a computationally cheaper way of extracting Gabor-like features. Principal Component Analysis (PCA) which is a linear dimensionality reduction technique, that attempts to represent data in lower dimensions, is used to perform the face recognition. The results demonstrate that using DT-CWT in the preprocessing phase and then applying PCA on the features extracted from the DT-CWT instead of raw face images, improves the recognition performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial signals addition for reducing PAPR of OFDM systems Iris Recognition System Using Combined Colour Statistics An Implementation of the Blowfish Cryptosystem Bspline based Wavelets with Lifting Implementation Advanced Bandwidth Brokering Architecture in PLC Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1