评价和组合名称实体识别系统

NEWS@ACM Pub Date : 1900-01-01 DOI:10.18653/v1/W16-2703
Ridong Jiang, Rafael E. Banchs, Haizhou Li
{"title":"评价和组合名称实体识别系统","authors":"Ridong Jiang, Rafael E. Banchs, Haizhou Li","doi":"10.18653/v1/W16-2703","DOIUrl":null,"url":null,"abstract":"Name entity recognition (NER) is an important subtask in natural language processing. Various NER systems have been developed in the last decade. They may target for different domains, employ different methodologies, work on different languages, detect different types of entities, and support different inputs and output formats. These conditions make it difficult for a user to select the right NER tools for a specific task. Motivated by the need of NER tools in our research work, we select several publicly available and well-established NER tools to validate their outputs against both Wikipedia gold standard corpus and a small set of manually annotated documents. All the evaluations show consistent results on the selected tools. Finally, we constructed a hybrid NER tool by combining the best performing tools for the domains of our interest.","PeriodicalId":254249,"journal":{"name":"NEWS@ACM","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":"{\"title\":\"Evaluating and Combining Name Entity Recognition Systems\",\"authors\":\"Ridong Jiang, Rafael E. Banchs, Haizhou Li\",\"doi\":\"10.18653/v1/W16-2703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Name entity recognition (NER) is an important subtask in natural language processing. Various NER systems have been developed in the last decade. They may target for different domains, employ different methodologies, work on different languages, detect different types of entities, and support different inputs and output formats. These conditions make it difficult for a user to select the right NER tools for a specific task. Motivated by the need of NER tools in our research work, we select several publicly available and well-established NER tools to validate their outputs against both Wikipedia gold standard corpus and a small set of manually annotated documents. All the evaluations show consistent results on the selected tools. Finally, we constructed a hybrid NER tool by combining the best performing tools for the domains of our interest.\",\"PeriodicalId\":254249,\"journal\":{\"name\":\"NEWS@ACM\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"74\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NEWS@ACM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W16-2703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NEWS@ACM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W16-2703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74

摘要

名称实体识别是自然语言处理中的一个重要子任务。在过去的十年中,各种NER系统得到了发展。它们可能针对不同的领域,采用不同的方法,使用不同的语言,检测不同类型的实体,并支持不同的输入和输出格式。这些条件使得用户难以为特定任务选择正确的NER工具。由于研究工作中需要NER工具,我们选择了几个公开可用且完善的NER工具来验证它们的输出,对照维基百科金标准语料库和一小组手动注释的文档。所有的评估都显示了所选工具的一致结果。最后,我们结合了我们感兴趣的领域中性能最好的工具,构建了一个混合NER工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating and Combining Name Entity Recognition Systems
Name entity recognition (NER) is an important subtask in natural language processing. Various NER systems have been developed in the last decade. They may target for different domains, employ different methodologies, work on different languages, detect different types of entities, and support different inputs and output formats. These conditions make it difficult for a user to select the right NER tools for a specific task. Motivated by the need of NER tools in our research work, we select several publicly available and well-established NER tools to validate their outputs against both Wikipedia gold standard corpus and a small set of manually annotated documents. All the evaluations show consistent results on the selected tools. Finally, we constructed a hybrid NER tool by combining the best performing tools for the domains of our interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-source named entity typing for social media Applying Neural Networks to English-Chinese Named Entity Transliteration Regulating Orthography-Phonology Relationship for English to Thai Transliteration Spanish NER with Word Representations and Conditional Random Fields German NER with a Multilingual Rule Based Information Extraction System: Analysis and Issues
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1