人机交互场景中认知负荷状态的初步分类

Andreas Oschlies-Strobel, Sascha Gruss, L. Jerg-Bretzke, Steffen Walter, Dilana Hazer-Rau
{"title":"人机交互场景中认知负荷状态的初步分类","authors":"Andreas Oschlies-Strobel, Sascha Gruss, L. Jerg-Bretzke, Steffen Walter, Dilana Hazer-Rau","doi":"10.1109/COMPANION.2017.8287084","DOIUrl":null,"url":null,"abstract":"In this work, different cognitive load situations are examined and classified in the context of a Human Computer Interaction (HCI) scenario. Machine learning methods were used to detect three cognitive load states (overload, underload, normal load) with the help of five different psychophysiological signals (ECG, EMG, Respiration, GSR, Temperature). At first it is shown, that the three regarded states can be clearly distinguished in the Valence-Arousal-Dominance space (VAD). After this comparisons between a 10-fold-valdidation and a batch-validation as well as three different classifiers (k-Nearest-Neighbour, Naive Bayes, Random Forest) are accomplished. At last the influence of gender in contrast to an overall analysis is shown.","PeriodicalId":132735,"journal":{"name":"2017 International Conference on Companion Technology (ICCT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Preliminary classification of cognitive load states in a human machine interaction scenario\",\"authors\":\"Andreas Oschlies-Strobel, Sascha Gruss, L. Jerg-Bretzke, Steffen Walter, Dilana Hazer-Rau\",\"doi\":\"10.1109/COMPANION.2017.8287084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, different cognitive load situations are examined and classified in the context of a Human Computer Interaction (HCI) scenario. Machine learning methods were used to detect three cognitive load states (overload, underload, normal load) with the help of five different psychophysiological signals (ECG, EMG, Respiration, GSR, Temperature). At first it is shown, that the three regarded states can be clearly distinguished in the Valence-Arousal-Dominance space (VAD). After this comparisons between a 10-fold-valdidation and a batch-validation as well as three different classifiers (k-Nearest-Neighbour, Naive Bayes, Random Forest) are accomplished. At last the influence of gender in contrast to an overall analysis is shown.\",\"PeriodicalId\":132735,\"journal\":{\"name\":\"2017 International Conference on Companion Technology (ICCT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Companion Technology (ICCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPANION.2017.8287084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Companion Technology (ICCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPANION.2017.8287084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在这项工作中,在人机交互(HCI)场景的背景下,对不同的认知负荷情况进行了检查和分类。采用机器学习方法,结合五种不同的心理生理信号(ECG、EMG、呼吸、GSR、体温)检测三种认知负荷状态(超负荷、欠负荷、正常负荷)。首先,在价-唤醒-优势空间(VAD)中可以清楚地区分这三种状态。在此之后,完成了10倍验证和批量验证以及三种不同分类器(k-Nearest-Neighbour,朴素贝叶斯,随机森林)之间的比较。最后,对比整体分析显示了性别的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preliminary classification of cognitive load states in a human machine interaction scenario
In this work, different cognitive load situations are examined and classified in the context of a Human Computer Interaction (HCI) scenario. Machine learning methods were used to detect three cognitive load states (overload, underload, normal load) with the help of five different psychophysiological signals (ECG, EMG, Respiration, GSR, Temperature). At first it is shown, that the three regarded states can be clearly distinguished in the Valence-Arousal-Dominance space (VAD). After this comparisons between a 10-fold-valdidation and a batch-validation as well as three different classifiers (k-Nearest-Neighbour, Naive Bayes, Random Forest) are accomplished. At last the influence of gender in contrast to an overall analysis is shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accelerating manual annotation of filled pauses by automatic pre-selection Dialogues with IoT companions: Enabling human interaction with intelligent service items Adaptive dynamic network architectures for companion systems Sloth — The interactive workout planner Multimodal fusion including camera photoplethysmography for pain recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1