基于结构相似度指标的深度卷积神经网络加速滤波器剪枝

Jihong Zhu, J. Pei
{"title":"基于结构相似度指标的深度卷积神经网络加速滤波器剪枝","authors":"Jihong Zhu, J. Pei","doi":"10.1109/ISKE47853.2019.9170362","DOIUrl":null,"url":null,"abstract":"Pruning can reduce the size of the model without reducing its performance. After pruning, the model can run in a small terminal flexibly. This paper proposes a new filter pruning method that uses soft filter pruning via a structural similarity index(FPSSI) to compress and prune the network. FPSSI uses the structural similarity index to measuring the difference between different filters, the filters with similar structures are pruned to achieve the purpose of compressing the Deep Convolutional Neural Networks(DNN) model. Compared to the norm-based approach to remove ”relatively low” importance filters, the proposed method takes into account the structure between the filters. When applied to the different classification benchmarks, our method validates its usefulness and advantages. In CIFAR10, the ResNet network uses the SFP-SSIM method to reduce 52% of FLOPs and has better accuracy.","PeriodicalId":399084,"journal":{"name":"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Filter Pruning via Structural Similarity Index for Deep Convolutional Neural Networks Acceleration\",\"authors\":\"Jihong Zhu, J. Pei\",\"doi\":\"10.1109/ISKE47853.2019.9170362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pruning can reduce the size of the model without reducing its performance. After pruning, the model can run in a small terminal flexibly. This paper proposes a new filter pruning method that uses soft filter pruning via a structural similarity index(FPSSI) to compress and prune the network. FPSSI uses the structural similarity index to measuring the difference between different filters, the filters with similar structures are pruned to achieve the purpose of compressing the Deep Convolutional Neural Networks(DNN) model. Compared to the norm-based approach to remove ”relatively low” importance filters, the proposed method takes into account the structure between the filters. When applied to the different classification benchmarks, our method validates its usefulness and advantages. In CIFAR10, the ResNet network uses the SFP-SSIM method to reduce 52% of FLOPs and has better accuracy.\",\"PeriodicalId\":399084,\"journal\":{\"name\":\"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISKE47853.2019.9170362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE47853.2019.9170362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

剪枝可以在不降低模型性能的情况下减小模型的大小。修剪后的模型可以灵活地在一个小终端运行。本文提出了一种新的滤波剪枝方法,通过结构相似指数(FPSSI)对网络进行软滤波剪枝压缩和剪枝。FPSSI利用结构相似性指标来衡量不同滤波器之间的差异,对结构相似的滤波器进行修剪,以达到压缩深度卷积神经网络(Deep Convolutional Neural Networks, DNN)模型的目的。与基于规范的方法去除“相对较低”重要性的滤波器相比,该方法考虑了滤波器之间的结构。当应用于不同的分类基准时,我们的方法验证了它的有用性和优点。在CIFAR10中,ResNet网络使用SFP-SSIM方法减少了52%的FLOPs,具有更好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Filter Pruning via Structural Similarity Index for Deep Convolutional Neural Networks Acceleration
Pruning can reduce the size of the model without reducing its performance. After pruning, the model can run in a small terminal flexibly. This paper proposes a new filter pruning method that uses soft filter pruning via a structural similarity index(FPSSI) to compress and prune the network. FPSSI uses the structural similarity index to measuring the difference between different filters, the filters with similar structures are pruned to achieve the purpose of compressing the Deep Convolutional Neural Networks(DNN) model. Compared to the norm-based approach to remove ”relatively low” importance filters, the proposed method takes into account the structure between the filters. When applied to the different classification benchmarks, our method validates its usefulness and advantages. In CIFAR10, the ResNet network uses the SFP-SSIM method to reduce 52% of FLOPs and has better accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incremental Learning for Transductive SVMs ISKE 2019 Table of Contents Consensus: The Minimum Cost Model based Robust Optimization A Learned Clause Deletion Strategy Based on Distance Ratio Effects of Real Estate Regulation Policy of Beijing Based on Discrete Dependent Variables Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1