移动应用的深度学习UI设计模式

Tam The Nguyen, P. Vu, H. Pham, T. Nguyen
{"title":"移动应用的深度学习UI设计模式","authors":"Tam The Nguyen, P. Vu, H. Pham, T. Nguyen","doi":"10.1145/3183399.3183422","DOIUrl":null,"url":null,"abstract":"User interface (UI) is one of the most important components of a mobile app and strongly influences users' perception of the app. However, UI design tasks are typically manual and time-consuming. This paper proposes a novel approach to (semi)-automate those tasks. Our key idea is to develop and deploy advanced deep learning models based on recurrent neural networks (RNN) and generative adversarial networks (GAN) to learn UI design patterns from millions of currently available mobile apps. Once trained, those models can be used to search for UI design samples given user-provided descriptions written in natural language and generate professional-looking UI designs from simpler, less elegant design drafts.","PeriodicalId":212579,"journal":{"name":"2018 IEEE/ACM 40th International Conference on Software Engineering: New Ideas and Emerging Technologies Results (ICSE-NIER)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Deep Learning UI Design Patterns of Mobile Apps\",\"authors\":\"Tam The Nguyen, P. Vu, H. Pham, T. Nguyen\",\"doi\":\"10.1145/3183399.3183422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"User interface (UI) is one of the most important components of a mobile app and strongly influences users' perception of the app. However, UI design tasks are typically manual and time-consuming. This paper proposes a novel approach to (semi)-automate those tasks. Our key idea is to develop and deploy advanced deep learning models based on recurrent neural networks (RNN) and generative adversarial networks (GAN) to learn UI design patterns from millions of currently available mobile apps. Once trained, those models can be used to search for UI design samples given user-provided descriptions written in natural language and generate professional-looking UI designs from simpler, less elegant design drafts.\",\"PeriodicalId\":212579,\"journal\":{\"name\":\"2018 IEEE/ACM 40th International Conference on Software Engineering: New Ideas and Emerging Technologies Results (ICSE-NIER)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM 40th International Conference on Software Engineering: New Ideas and Emerging Technologies Results (ICSE-NIER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3183399.3183422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 40th International Conference on Software Engineering: New Ideas and Emerging Technologies Results (ICSE-NIER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183399.3183422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

用户界面(UI)是移动应用最重要的组成部分之一,它强烈地影响着用户对应用的看法。然而,UI设计任务通常是手动且耗时的。本文提出了一种(半)自动化这些任务的新方法。我们的主要想法是开发和部署基于循环神经网络(RNN)和生成对抗网络(GAN)的高级深度学习模型,从数百万当前可用的移动应用程序中学习UI设计模式。经过训练后,这些模型可以用来搜索用户提供的自然语言描述的UI设计样本,并从更简单、不那么优雅的设计草稿中生成专业的UI设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning UI Design Patterns of Mobile Apps
User interface (UI) is one of the most important components of a mobile app and strongly influences users' perception of the app. However, UI design tasks are typically manual and time-consuming. This paper proposes a novel approach to (semi)-automate those tasks. Our key idea is to develop and deploy advanced deep learning models based on recurrent neural networks (RNN) and generative adversarial networks (GAN) to learn UI design patterns from millions of currently available mobile apps. Once trained, those models can be used to search for UI design samples given user-provided descriptions written in natural language and generate professional-looking UI designs from simpler, less elegant design drafts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalizing Specific-Instance Interpolation Proofs with SyGuS Images of Code: Lossy Compression for Native Instructions Enabling Real-Time Feedback in Software Engineering Deep Customization of Multi-tenant SaaS Using Intrusive Microservices Measure Confidence of Assurance Cases in Safety-Critical Domains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1