法语和德语LVCSR中英文神经网络特征的跨语言可移植性

Christian Plahl, R. Schlüter, H. Ney
{"title":"法语和德语LVCSR中英文神经网络特征的跨语言可移植性","authors":"Christian Plahl, R. Schlüter, H. Ney","doi":"10.1109/ASRU.2011.6163960","DOIUrl":null,"url":null,"abstract":"This paper investigates neural network (NN) based cross-lingual probabilistic features. Earlier work reports that intra-lingual features consistently outperform the corresponding cross-lingual features. We show that this may not generalize. Depending on the complexity of the NN features, cross-lingual features reduce the resources used for training —the NN has to be trained on one language only— without any loss in performance w.r.t. word error rate (WER). To further investigate this inconsistency concerning intra- vs. cross-lingual neural network features, we analyze the performance of these features w.r.t. the degree of kinship between training and testing language, and the amount of training data used. Whenever the same amount of data is used for NN training, a close relationship between training and testing language is required to achieve similar results. By increasing the training data the relationship becomes less, as well as changing the topology of the NN to the bottle neck structure. Moreover, cross-lingual features trained on English or Chinese improve the best intra-lingual system for German up to 2% relative in WER and up to 3% relative for French and achieve the same improvement as for discriminative training. Moreover, we gain again up to 8% relative in WER by combining intra- and cross-lingual systems.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"3 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Cross-lingual portability of Chinese and english neural network features for French and German LVCSR\",\"authors\":\"Christian Plahl, R. Schlüter, H. Ney\",\"doi\":\"10.1109/ASRU.2011.6163960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates neural network (NN) based cross-lingual probabilistic features. Earlier work reports that intra-lingual features consistently outperform the corresponding cross-lingual features. We show that this may not generalize. Depending on the complexity of the NN features, cross-lingual features reduce the resources used for training —the NN has to be trained on one language only— without any loss in performance w.r.t. word error rate (WER). To further investigate this inconsistency concerning intra- vs. cross-lingual neural network features, we analyze the performance of these features w.r.t. the degree of kinship between training and testing language, and the amount of training data used. Whenever the same amount of data is used for NN training, a close relationship between training and testing language is required to achieve similar results. By increasing the training data the relationship becomes less, as well as changing the topology of the NN to the bottle neck structure. Moreover, cross-lingual features trained on English or Chinese improve the best intra-lingual system for German up to 2% relative in WER and up to 3% relative for French and achieve the same improvement as for discriminative training. Moreover, we gain again up to 8% relative in WER by combining intra- and cross-lingual systems.\",\"PeriodicalId\":338241,\"journal\":{\"name\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"volume\":\"3 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2011.6163960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

本文研究了基于神经网络的跨语言概率特征。早期的工作报告表明,语内特征始终优于相应的跨语言特征。我们证明这可能不能推广。根据神经网络特征的复杂性,跨语言特征减少了用于训练的资源——神经网络只能在一种语言上训练——而不会在性能上有任何损失。为了进一步研究跨语言和内语言神经网络特征的不一致性,我们分析了这些特征的性能,包括训练语言和测试语言之间的亲缘关系程度,以及使用的训练数据量。每当使用相同数量的数据进行神经网络训练时,需要训练语言和测试语言之间的密切关系才能获得相似的结果。通过增加训练数据,这种关系变得更小,并将神经网络的拓扑结构改变为瓶颈结构。此外,用英语或中文训练的跨语言特征使德语的最佳语内系统相对于WER提高了2%,相对于法语提高了3%,并且取得了与歧视性训练相同的改进。此外,通过结合内部和跨语言系统,我们在WER中再次获得高达8%的相对收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cross-lingual portability of Chinese and english neural network features for French and German LVCSR
This paper investigates neural network (NN) based cross-lingual probabilistic features. Earlier work reports that intra-lingual features consistently outperform the corresponding cross-lingual features. We show that this may not generalize. Depending on the complexity of the NN features, cross-lingual features reduce the resources used for training —the NN has to be trained on one language only— without any loss in performance w.r.t. word error rate (WER). To further investigate this inconsistency concerning intra- vs. cross-lingual neural network features, we analyze the performance of these features w.r.t. the degree of kinship between training and testing language, and the amount of training data used. Whenever the same amount of data is used for NN training, a close relationship between training and testing language is required to achieve similar results. By increasing the training data the relationship becomes less, as well as changing the topology of the NN to the bottle neck structure. Moreover, cross-lingual features trained on English or Chinese improve the best intra-lingual system for German up to 2% relative in WER and up to 3% relative for French and achieve the same improvement as for discriminative training. Moreover, we gain again up to 8% relative in WER by combining intra- and cross-lingual systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Applying feature bagging for more accurate and robust automated speaking assessment Towards choosing better primes for spoken dialog systems Accent level adjustment in bilingual Thai-English text-to-speech synthesis Fast speaker diarization using a high-level scripting language Evaluating prosodic features for automated scoring of non-native read speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1