FaceOff:协助Web图形用户界面的表现设计

Shuyu Zheng, Ziniu Hu, Yun Ma
{"title":"FaceOff:协助Web图形用户界面的表现设计","authors":"Shuyu Zheng, Ziniu Hu, Yun Ma","doi":"10.1145/3289600.3290610","DOIUrl":null,"url":null,"abstract":"Designing desirable and aesthetical manifestation of web graphic user interfaces (GUI) is a challenging task for web developers. After determining a web page's content, developers usually refer to existing pages, and adapt the styles from desired pages into the target one. However, it is not only difficult to find appropriate pages to exhibit the target page's content, but also tedious to incorporate styles from different pages harmoniously in the target page. To tackle these two issues, we propose FaceOff, a data-driven automation system that assists the manifestation design of web GUI. FaceOff constructs a repository of web GUI templates based on 15,491 web pages from popular websites and professional design examples. Given a web page for designing manifestation, FaceOff first segments it into multiple blocks, and retrieves GUI templates in the repository for each block. Subsequently, FaceOff recommends multiple combinations of templates according to a Convolutional Neural Network (CNN) based style-embedding model, which makes the recommended style combinations diverse and accordant. We demonstrate that FaceOff can retrieve suitable GUI templates with well-designed and harmonious style, and thus alleviate the developer efforts.","PeriodicalId":143253,"journal":{"name":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"FaceOff: Assisting the Manifestation Design of Web Graphical User Interface\",\"authors\":\"Shuyu Zheng, Ziniu Hu, Yun Ma\",\"doi\":\"10.1145/3289600.3290610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing desirable and aesthetical manifestation of web graphic user interfaces (GUI) is a challenging task for web developers. After determining a web page's content, developers usually refer to existing pages, and adapt the styles from desired pages into the target one. However, it is not only difficult to find appropriate pages to exhibit the target page's content, but also tedious to incorporate styles from different pages harmoniously in the target page. To tackle these two issues, we propose FaceOff, a data-driven automation system that assists the manifestation design of web GUI. FaceOff constructs a repository of web GUI templates based on 15,491 web pages from popular websites and professional design examples. Given a web page for designing manifestation, FaceOff first segments it into multiple blocks, and retrieves GUI templates in the repository for each block. Subsequently, FaceOff recommends multiple combinations of templates according to a Convolutional Neural Network (CNN) based style-embedding model, which makes the recommended style combinations diverse and accordant. We demonstrate that FaceOff can retrieve suitable GUI templates with well-designed and harmonious style, and thus alleviate the developer efforts.\",\"PeriodicalId\":143253,\"journal\":{\"name\":\"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3289600.3290610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3289600.3290610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

设计令人满意的、美观的web图形用户界面(GUI)对web开发人员来说是一项具有挑战性的任务。在确定了网页的内容后,开发人员通常会参考现有的页面,并将期望页面的样式调整为目标页面。然而,不仅很难找到合适的页面来展示目标页面的内容,而且在目标页面中和谐地融入不同页面的样式也很繁琐。为了解决这两个问题,我们提出了FaceOff,一个数据驱动的自动化系统,帮助web GUI的显示设计。FaceOff基于来自流行网站和专业设计示例的15,491个网页构建了一个web GUI模板库。给定一个用于设计显示的网页,FaceOff首先将其分成多个块,并在每个块的存储库中检索GUI模板。随后,FaceOff根据基于卷积神经网络(CNN)的样式嵌入模型推荐多种模板组合,使推荐的样式组合多样化和一致性。我们证明了FaceOff可以检索合适的GUI模板,设计良好,风格和谐,从而减轻了开发人员的工作量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FaceOff: Assisting the Manifestation Design of Web Graphical User Interface
Designing desirable and aesthetical manifestation of web graphic user interfaces (GUI) is a challenging task for web developers. After determining a web page's content, developers usually refer to existing pages, and adapt the styles from desired pages into the target one. However, it is not only difficult to find appropriate pages to exhibit the target page's content, but also tedious to incorporate styles from different pages harmoniously in the target page. To tackle these two issues, we propose FaceOff, a data-driven automation system that assists the manifestation design of web GUI. FaceOff constructs a repository of web GUI templates based on 15,491 web pages from popular websites and professional design examples. Given a web page for designing manifestation, FaceOff first segments it into multiple blocks, and retrieves GUI templates in the repository for each block. Subsequently, FaceOff recommends multiple combinations of templates according to a Convolutional Neural Network (CNN) based style-embedding model, which makes the recommended style combinations diverse and accordant. We demonstrate that FaceOff can retrieve suitable GUI templates with well-designed and harmonious style, and thus alleviate the developer efforts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DAPA: The WSDM 2019 Workshop on Deep Matching in Practical Applications Solving the Sparsity Problem in Recommendations via Cross-Domain Item Embedding Based on Co-Clustering More Than Just Words: Modeling Non-Textual Characteristics of Podcasts Pleasant Route Suggestion based on Color and Object Rates Session details: Session 6: Networks and Social Behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1