基于卷积神经网络的无人机系统虚假数据注入攻击检测方法

C. Titouna, Farid Naït-Abdesselam
{"title":"基于卷积神经网络的无人机系统虚假数据注入攻击检测方法","authors":"C. Titouna, Farid Naït-Abdesselam","doi":"10.1109/ISCC55528.2022.9912761","DOIUrl":null,"url":null,"abstract":"With the growing use of Unmanned Aerial Vehicles (UAVs) in military and civilian applications, cyber-attacks are increasing significantly. Therefore, detection of attacks becomes indispensable for such systems. In this paper, we focus on the detection of False Data Injection (FDI) attacks in Unmanned Aerial Systems (UASs). Considered to be the most performed attack, an attacker injects fake data into the system in order to disrupt the final decision. To combat this threat, our proposal is built on image analysis and classification. First, we resize the received image in order to adapt it to feed the classifier using the Nearest Neighbor Interpolation (NNI). Second, we train, validate, and test a Convolutional Neural Network (CNN) to perform the image classification. Finally, we compare each classification result classes to a neighborhood using Euclidean distance. Numerical results on the VisDrone dataset demonstrate the efficiency of our proposal under a set of metrics.","PeriodicalId":309606,"journal":{"name":"2022 IEEE Symposium on Computers and Communications (ISCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A False Data Injection Attack Detection Approach Using Convolutional Neural Networks in Unmanned Aerial Systems\",\"authors\":\"C. Titouna, Farid Naït-Abdesselam\",\"doi\":\"10.1109/ISCC55528.2022.9912761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growing use of Unmanned Aerial Vehicles (UAVs) in military and civilian applications, cyber-attacks are increasing significantly. Therefore, detection of attacks becomes indispensable for such systems. In this paper, we focus on the detection of False Data Injection (FDI) attacks in Unmanned Aerial Systems (UASs). Considered to be the most performed attack, an attacker injects fake data into the system in order to disrupt the final decision. To combat this threat, our proposal is built on image analysis and classification. First, we resize the received image in order to adapt it to feed the classifier using the Nearest Neighbor Interpolation (NNI). Second, we train, validate, and test a Convolutional Neural Network (CNN) to perform the image classification. Finally, we compare each classification result classes to a neighborhood using Euclidean distance. Numerical results on the VisDrone dataset demonstrate the efficiency of our proposal under a set of metrics.\",\"PeriodicalId\":309606,\"journal\":{\"name\":\"2022 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC55528.2022.9912761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC55528.2022.9912761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着无人驾驶飞行器(uav)在军事和民用领域的应用越来越广泛,网络攻击也越来越多。因此,对这些系统进行攻击检测是必不可少的。本文主要研究了无人机系统中虚假数据注入(FDI)攻击的检测问题。攻击者将虚假数据注入系统以破坏最终决策,这被认为是执行次数最多的攻击。为了对抗这种威胁,我们的建议建立在图像分析和分类的基础上。首先,我们调整接收到的图像的大小,以便使用最近邻插值(NNI)使其适应分类器。其次,我们训练、验证和测试卷积神经网络(CNN)来执行图像分类。最后,我们使用欧几里得距离将每个分类结果类与邻域进行比较。在VisDrone数据集上的数值结果证明了我们的建议在一组指标下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A False Data Injection Attack Detection Approach Using Convolutional Neural Networks in Unmanned Aerial Systems
With the growing use of Unmanned Aerial Vehicles (UAVs) in military and civilian applications, cyber-attacks are increasing significantly. Therefore, detection of attacks becomes indispensable for such systems. In this paper, we focus on the detection of False Data Injection (FDI) attacks in Unmanned Aerial Systems (UASs). Considered to be the most performed attack, an attacker injects fake data into the system in order to disrupt the final decision. To combat this threat, our proposal is built on image analysis and classification. First, we resize the received image in order to adapt it to feed the classifier using the Nearest Neighbor Interpolation (NNI). Second, we train, validate, and test a Convolutional Neural Network (CNN) to perform the image classification. Finally, we compare each classification result classes to a neighborhood using Euclidean distance. Numerical results on the VisDrone dataset demonstrate the efficiency of our proposal under a set of metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Convergence-Time Analysis for the HTE Link Quality Estimator OCVC: An Overlapping-Enabled Cooperative Computing Protocol in Vehicular Fog Computing Non-Contact Heart Rate Signal Extraction and Identification Based on Speckle Image Active Eavesdroppers Detection System in Multi-hop Wireless Sensor Networks A Comparison of Machine and Deep Learning Models for Detection and Classification of Android Malware Traffic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1