为物联网引入DyMonDS-as-a-Service (DyMaaS)

M. Ilić, Rupamathi Jaddivada
{"title":"为物联网引入DyMonDS-as-a-Service (DyMaaS)","authors":"M. Ilić, Rupamathi Jaddivada","doi":"10.1109/HPEC.2019.8916560","DOIUrl":null,"url":null,"abstract":"With recent trends in computation and communication architecture, it is becoming possible to simulate complex networked dynamical systems by employing high-fidelity models. The inherent spatial and temporal complexity of these systems, however, still acts as a roadblock. It is thus desirable to have adaptive platform design facilitating zooming-in and out of the models to emulate time-evolution of processes at a desired spatial and temporal granularity. In this paper, we propose new computing and networking abstractions, that can embrace physical dynamics and computations in a unified manner, by taking advantage of the inherent structure. We further design multi-rate numerical methods that can be implemented by computing architectures to facilitate adaptive zooming-in and out of the models spanning multiple spatial and temporal layers. These methods are all embedded in a platform called Dynamic Monitoring and Decision Systems (DyMonDS). We introduce a new service model of cloud computing called DyMonDS-as-a-Service (DyMaas), for use by operators at various spatial granularities to efficiently emulate the interconnection of IoT devices. The usage of this platform is described in the context of an electric microgrid system emulation.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Introducing DyMonDS-as-a-Service (DyMaaS) for Internet of Things\",\"authors\":\"M. Ilić, Rupamathi Jaddivada\",\"doi\":\"10.1109/HPEC.2019.8916560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With recent trends in computation and communication architecture, it is becoming possible to simulate complex networked dynamical systems by employing high-fidelity models. The inherent spatial and temporal complexity of these systems, however, still acts as a roadblock. It is thus desirable to have adaptive platform design facilitating zooming-in and out of the models to emulate time-evolution of processes at a desired spatial and temporal granularity. In this paper, we propose new computing and networking abstractions, that can embrace physical dynamics and computations in a unified manner, by taking advantage of the inherent structure. We further design multi-rate numerical methods that can be implemented by computing architectures to facilitate adaptive zooming-in and out of the models spanning multiple spatial and temporal layers. These methods are all embedded in a platform called Dynamic Monitoring and Decision Systems (DyMonDS). We introduce a new service model of cloud computing called DyMonDS-as-a-Service (DyMaas), for use by operators at various spatial granularities to efficiently emulate the interconnection of IoT devices. The usage of this platform is described in the context of an electric microgrid system emulation.\",\"PeriodicalId\":184253,\"journal\":{\"name\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2019.8916560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着计算和通信体系结构的发展,利用高保真模型来模拟复杂的网络动态系统成为可能。然而,这些系统固有的空间和时间复杂性仍然是一个障碍。因此,需要有自适应的平台设计,以便在所需的空间和时间粒度上放大和缩小模型,以模拟过程的时间演化。在本文中,我们提出了新的计算和网络抽象,它可以利用固有的结构,以统一的方式包含物理动力学和计算。我们进一步设计了可以通过计算架构实现的多速率数值方法,以促进跨越多个空间和时间层的模型的自适应放大和缩小。这些方法都嵌入在一个名为动态监测和决策系统(DyMonDS)的平台中。我们引入了一种新的云计算服务模型,称为DyMonDS-as-a-Service (DyMaas),供不同空间粒度的运营商使用,以有效地模拟物联网设备的互连。以某微电网系统仿真为背景,介绍了该平台的使用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Introducing DyMonDS-as-a-Service (DyMaaS) for Internet of Things
With recent trends in computation and communication architecture, it is becoming possible to simulate complex networked dynamical systems by employing high-fidelity models. The inherent spatial and temporal complexity of these systems, however, still acts as a roadblock. It is thus desirable to have adaptive platform design facilitating zooming-in and out of the models to emulate time-evolution of processes at a desired spatial and temporal granularity. In this paper, we propose new computing and networking abstractions, that can embrace physical dynamics and computations in a unified manner, by taking advantage of the inherent structure. We further design multi-rate numerical methods that can be implemented by computing architectures to facilitate adaptive zooming-in and out of the models spanning multiple spatial and temporal layers. These methods are all embedded in a platform called Dynamic Monitoring and Decision Systems (DyMonDS). We introduce a new service model of cloud computing called DyMonDS-as-a-Service (DyMaas), for use by operators at various spatial granularities to efficiently emulate the interconnection of IoT devices. The usage of this platform is described in the context of an electric microgrid system emulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[HPEC 2019 Copyright notice] Concurrent Katz Centrality for Streaming Graphs Cyber Baselining: Statistical properties of cyber time series and the search for stability Emerging Applications of 3D Integration and Approximate Computing in High-Performance Computing Systems: Unique Security Vulnerabilities Target-based Resource Allocation for Deep Learning Applications in a Multi-tenancy System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1