头部运动预测的频域分析

Ronald T. Azuma, G. Bishop
{"title":"头部运动预测的频域分析","authors":"Ronald T. Azuma, G. Bishop","doi":"10.1145/218380.218496","DOIUrl":null,"url":null,"abstract":"The use of prediction to eliminate or reduce the effects of system delays in Head-Mounted Display systems has been the subject of several recent papers. A variety of methods have been proposed but almost all the analysis has been empirical, making comparisons of results difficult and providing little direction to the designer of new systems. In this paper, we characterize the performance of two classes of head-motion predictors by analyzing them in the frequency domain. The first predictor is a polynomial extrapolation and the other is based on the Kalman filter. Our analysis shows that even with perfect, noise-free inputs, the error in predicted position grows rapidly with increasing prediction intervals and input signal frequencies. Given the spectra of the original head motion, this analysis estimates the spectra of the predicted motion, quantifying a predictor's performance on different systems and applications. Acceleration sensors are shown to be more useful to a predictor than velocity sensors. The methods described will enable designers to determine maximum acceptable system delay based on maximum tolerable error and the characteristics of user motions in the application. CR","PeriodicalId":447770,"journal":{"name":"Proceedings of the 22nd annual conference on Computer graphics and interactive techniques","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"120","resultStr":"{\"title\":\"A frequency-domain analysis of head-motion prediction\",\"authors\":\"Ronald T. Azuma, G. Bishop\",\"doi\":\"10.1145/218380.218496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of prediction to eliminate or reduce the effects of system delays in Head-Mounted Display systems has been the subject of several recent papers. A variety of methods have been proposed but almost all the analysis has been empirical, making comparisons of results difficult and providing little direction to the designer of new systems. In this paper, we characterize the performance of two classes of head-motion predictors by analyzing them in the frequency domain. The first predictor is a polynomial extrapolation and the other is based on the Kalman filter. Our analysis shows that even with perfect, noise-free inputs, the error in predicted position grows rapidly with increasing prediction intervals and input signal frequencies. Given the spectra of the original head motion, this analysis estimates the spectra of the predicted motion, quantifying a predictor's performance on different systems and applications. Acceleration sensors are shown to be more useful to a predictor than velocity sensors. The methods described will enable designers to determine maximum acceptable system delay based on maximum tolerable error and the characteristics of user motions in the application. CR\",\"PeriodicalId\":447770,\"journal\":{\"name\":\"Proceedings of the 22nd annual conference on Computer graphics and interactive techniques\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"120\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd annual conference on Computer graphics and interactive techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/218380.218496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd annual conference on Computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/218380.218496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 120

摘要

使用预测来消除或减少头戴式显示系统中系统延迟的影响已成为最近几篇论文的主题。人们提出了各种各样的方法,但几乎所有的分析都是经验性的,这使得比较结果变得困难,也给新系统的设计者提供了很少的指导。本文通过对两类头部运动预测器的频域分析来表征它们的性能。第一个预测器是多项式外推,另一个是基于卡尔曼滤波器。我们的分析表明,即使有完美的、无噪声的输入,预测位置的误差也会随着预测间隔和输入信号频率的增加而迅速增长。给定原始头部运动的频谱,该分析估计预测运动的频谱,量化预测器在不同系统和应用中的性能。加速度传感器比速度传感器对预测器更有用。所描述的方法将使设计人员能够根据最大可容忍误差和应用程序中用户运动的特征确定最大可接受的系统延迟。CR
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A frequency-domain analysis of head-motion prediction
The use of prediction to eliminate or reduce the effects of system delays in Head-Mounted Display systems has been the subject of several recent papers. A variety of methods have been proposed but almost all the analysis has been empirical, making comparisons of results difficult and providing little direction to the designer of new systems. In this paper, we characterize the performance of two classes of head-motion predictors by analyzing them in the frequency domain. The first predictor is a polynomial extrapolation and the other is based on the Kalman filter. Our analysis shows that even with perfect, noise-free inputs, the error in predicted position grows rapidly with increasing prediction intervals and input signal frequencies. Given the spectra of the original head motion, this analysis estimates the spectra of the predicted motion, quantifying a predictor's performance on different systems and applications. Acceleration sensors are shown to be more useful to a predictor than velocity sensors. The methods described will enable designers to determine maximum acceptable system delay based on maximum tolerable error and the characteristics of user motions in the application. CR
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Steven A. Coons award for outstanding creative contributions to computer graphics 3D graphics through the Internet—a “shoot-out” (panel session) Feature-based volume metamorphosis A signal processing approach to fair surface design Integrating interactive graphics techniques with future technologies (panel session)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1