{"title":"为无线传感器网络提供自校准能力的无线参考节点","authors":"D. Smorgon, V. Fernicola","doi":"10.1109/ICSENST.2015.7438418","DOIUrl":null,"url":null,"abstract":"Wireless sensors networks (WSNs) are constantly expanding their application field, from simple two-state measurements (e.g., on/off, proximity detection, etc.) to distributed many-parameter measurements. Commercial WSNs offer a wide range of functions and performance with sensors sometimes achieving accuracy comparable with desktop instrumentation. However, the advantage of using such sensors for in-situ monitoring is often offset by the need of partially dismantling the network at the time of periodic network nodes calibration. As a result, new reference standards suitable for automatic and in-situ calibration of such sensors networks are needed in order to reduce the calibration cost, the inherent inefficiency and the logistic problems of a laboratory calibration, further exploiting the communication capabilities of a WSN. This work discusses the development of a wireless reference node (WRN) for the measuring of environment quantity such as air temperature (T) and relative humidity (RH). The module was developed for accurate measurements of additional environment-related quantities whose principle is based on a capacitive sensing mechanism (e.g. pressure, air-flow, moisture, etc...). The WRN performance was investigated in the temperature range from 0 °C to 40 °C and in the relative humidity range from 10 %rh to about 90 %rh for its potential use as a transfer standard for automatic in-situ calibrations. Some of novelties here reported were patented and are now available to upgrade a basic WSN with an automatic in-situ calibration capability.","PeriodicalId":375376,"journal":{"name":"2015 9th International Conference on Sensing Technology (ICST)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A wireless reference node to provide self-calibration capability to wireless sensors networks\",\"authors\":\"D. Smorgon, V. Fernicola\",\"doi\":\"10.1109/ICSENST.2015.7438418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless sensors networks (WSNs) are constantly expanding their application field, from simple two-state measurements (e.g., on/off, proximity detection, etc.) to distributed many-parameter measurements. Commercial WSNs offer a wide range of functions and performance with sensors sometimes achieving accuracy comparable with desktop instrumentation. However, the advantage of using such sensors for in-situ monitoring is often offset by the need of partially dismantling the network at the time of periodic network nodes calibration. As a result, new reference standards suitable for automatic and in-situ calibration of such sensors networks are needed in order to reduce the calibration cost, the inherent inefficiency and the logistic problems of a laboratory calibration, further exploiting the communication capabilities of a WSN. This work discusses the development of a wireless reference node (WRN) for the measuring of environment quantity such as air temperature (T) and relative humidity (RH). The module was developed for accurate measurements of additional environment-related quantities whose principle is based on a capacitive sensing mechanism (e.g. pressure, air-flow, moisture, etc...). The WRN performance was investigated in the temperature range from 0 °C to 40 °C and in the relative humidity range from 10 %rh to about 90 %rh for its potential use as a transfer standard for automatic in-situ calibrations. Some of novelties here reported were patented and are now available to upgrade a basic WSN with an automatic in-situ calibration capability.\",\"PeriodicalId\":375376,\"journal\":{\"name\":\"2015 9th International Conference on Sensing Technology (ICST)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 9th International Conference on Sensing Technology (ICST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENST.2015.7438418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 9th International Conference on Sensing Technology (ICST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENST.2015.7438418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A wireless reference node to provide self-calibration capability to wireless sensors networks
Wireless sensors networks (WSNs) are constantly expanding their application field, from simple two-state measurements (e.g., on/off, proximity detection, etc.) to distributed many-parameter measurements. Commercial WSNs offer a wide range of functions and performance with sensors sometimes achieving accuracy comparable with desktop instrumentation. However, the advantage of using such sensors for in-situ monitoring is often offset by the need of partially dismantling the network at the time of periodic network nodes calibration. As a result, new reference standards suitable for automatic and in-situ calibration of such sensors networks are needed in order to reduce the calibration cost, the inherent inefficiency and the logistic problems of a laboratory calibration, further exploiting the communication capabilities of a WSN. This work discusses the development of a wireless reference node (WRN) for the measuring of environment quantity such as air temperature (T) and relative humidity (RH). The module was developed for accurate measurements of additional environment-related quantities whose principle is based on a capacitive sensing mechanism (e.g. pressure, air-flow, moisture, etc...). The WRN performance was investigated in the temperature range from 0 °C to 40 °C and in the relative humidity range from 10 %rh to about 90 %rh for its potential use as a transfer standard for automatic in-situ calibrations. Some of novelties here reported were patented and are now available to upgrade a basic WSN with an automatic in-situ calibration capability.