为无线传感器网络提供自校准能力的无线参考节点

D. Smorgon, V. Fernicola
{"title":"为无线传感器网络提供自校准能力的无线参考节点","authors":"D. Smorgon, V. Fernicola","doi":"10.1109/ICSENST.2015.7438418","DOIUrl":null,"url":null,"abstract":"Wireless sensors networks (WSNs) are constantly expanding their application field, from simple two-state measurements (e.g., on/off, proximity detection, etc.) to distributed many-parameter measurements. Commercial WSNs offer a wide range of functions and performance with sensors sometimes achieving accuracy comparable with desktop instrumentation. However, the advantage of using such sensors for in-situ monitoring is often offset by the need of partially dismantling the network at the time of periodic network nodes calibration. As a result, new reference standards suitable for automatic and in-situ calibration of such sensors networks are needed in order to reduce the calibration cost, the inherent inefficiency and the logistic problems of a laboratory calibration, further exploiting the communication capabilities of a WSN. This work discusses the development of a wireless reference node (WRN) for the measuring of environment quantity such as air temperature (T) and relative humidity (RH). The module was developed for accurate measurements of additional environment-related quantities whose principle is based on a capacitive sensing mechanism (e.g. pressure, air-flow, moisture, etc...). The WRN performance was investigated in the temperature range from 0 °C to 40 °C and in the relative humidity range from 10 %rh to about 90 %rh for its potential use as a transfer standard for automatic in-situ calibrations. Some of novelties here reported were patented and are now available to upgrade a basic WSN with an automatic in-situ calibration capability.","PeriodicalId":375376,"journal":{"name":"2015 9th International Conference on Sensing Technology (ICST)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A wireless reference node to provide self-calibration capability to wireless sensors networks\",\"authors\":\"D. Smorgon, V. Fernicola\",\"doi\":\"10.1109/ICSENST.2015.7438418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless sensors networks (WSNs) are constantly expanding their application field, from simple two-state measurements (e.g., on/off, proximity detection, etc.) to distributed many-parameter measurements. Commercial WSNs offer a wide range of functions and performance with sensors sometimes achieving accuracy comparable with desktop instrumentation. However, the advantage of using such sensors for in-situ monitoring is often offset by the need of partially dismantling the network at the time of periodic network nodes calibration. As a result, new reference standards suitable for automatic and in-situ calibration of such sensors networks are needed in order to reduce the calibration cost, the inherent inefficiency and the logistic problems of a laboratory calibration, further exploiting the communication capabilities of a WSN. This work discusses the development of a wireless reference node (WRN) for the measuring of environment quantity such as air temperature (T) and relative humidity (RH). The module was developed for accurate measurements of additional environment-related quantities whose principle is based on a capacitive sensing mechanism (e.g. pressure, air-flow, moisture, etc...). The WRN performance was investigated in the temperature range from 0 °C to 40 °C and in the relative humidity range from 10 %rh to about 90 %rh for its potential use as a transfer standard for automatic in-situ calibrations. Some of novelties here reported were patented and are now available to upgrade a basic WSN with an automatic in-situ calibration capability.\",\"PeriodicalId\":375376,\"journal\":{\"name\":\"2015 9th International Conference on Sensing Technology (ICST)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 9th International Conference on Sensing Technology (ICST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENST.2015.7438418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 9th International Conference on Sensing Technology (ICST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENST.2015.7438418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

无线传感器网络(WSNs)的应用领域正在不断扩大,从简单的双态测量(如开/关、接近检测等)到分布式多参数测量。商用无线传感器网络提供广泛的功能和性能,传感器有时可以达到与台式仪器相当的精度。然而,使用这种传感器进行现场监测的优势往往被需要在周期性网络节点校准时部分拆除网络所抵消。因此,为了降低校准成本、降低实验室校准固有的低效率和后勤问题,进一步开发WSN的通信能力,需要新的适用于此类传感器网络的自动和原位校准的参考标准。这项工作讨论了无线参考节点(WRN)的发展,用于测量环境量,如空气温度(T)和相对湿度(RH)。该模块是为精确测量额外的环境相关量而开发的,其原理基于电容传感机制(例如压力,空气流量,湿度等)。在0°C至40°C的温度范围和10% rh至约90% rh的相对湿度范围内,研究了WRN的性能,以便将其用作自动原位校准的传递标准。本文报道的一些新技术已获得专利,现在可用于升级具有自动原位校准功能的基本WSN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A wireless reference node to provide self-calibration capability to wireless sensors networks
Wireless sensors networks (WSNs) are constantly expanding their application field, from simple two-state measurements (e.g., on/off, proximity detection, etc.) to distributed many-parameter measurements. Commercial WSNs offer a wide range of functions and performance with sensors sometimes achieving accuracy comparable with desktop instrumentation. However, the advantage of using such sensors for in-situ monitoring is often offset by the need of partially dismantling the network at the time of periodic network nodes calibration. As a result, new reference standards suitable for automatic and in-situ calibration of such sensors networks are needed in order to reduce the calibration cost, the inherent inefficiency and the logistic problems of a laboratory calibration, further exploiting the communication capabilities of a WSN. This work discusses the development of a wireless reference node (WRN) for the measuring of environment quantity such as air temperature (T) and relative humidity (RH). The module was developed for accurate measurements of additional environment-related quantities whose principle is based on a capacitive sensing mechanism (e.g. pressure, air-flow, moisture, etc...). The WRN performance was investigated in the temperature range from 0 °C to 40 °C and in the relative humidity range from 10 %rh to about 90 %rh for its potential use as a transfer standard for automatic in-situ calibrations. Some of novelties here reported were patented and are now available to upgrade a basic WSN with an automatic in-situ calibration capability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The development and evaluation of an arm usage coach for Stroke survivors Uncertainty analysis of a vibrating-wire system for magnetic axes localization Magnetic field shaping for improved 1-D linear position measurement Real-time detection of residual antibiotics concentration with microwave cavity and planar EM sensors Ambient temperature effect on Amorphous Silicon (A-Si) Photovoltaic module using sensing technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1