基于热传感器和雷达传感器的手势识别深度学习

Sruthy Skaria, Da Huang, A. Al-Hourani, R. Evans, M. Lech
{"title":"基于热传感器和雷达传感器的手势识别深度学习","authors":"Sruthy Skaria, Da Huang, A. Al-Hourani, R. Evans, M. Lech","doi":"10.1109/SENSORS47125.2020.9278683","DOIUrl":null,"url":null,"abstract":"In this paper, we present a framework for integrating two different types of sensors for hand-gesture recognition using deep-learning. The two sensors utilize completely different approaches for detecting the signal, namely; an ultra-wideband (UWB) impulse radar sensor and a thermal sensor. For robust gesture classification two parallel paths are utilized, each employs a combination of a convolutional neural network (CNN) and a long short-term memory (LSTM) network on both the radar signal and the thermal signal. The classification results from the two paths are then fused to improve the overall detection probability. The two sensors compliment the capability of each other; while the UWB radar is accurate for radial movement and less accurate for lateral movement, the thermal sensor is vice-versa. Thus, we find that combining both sensors produces near perfect classification accuracy of 99 % for 14 different hand-gestures.","PeriodicalId":338240,"journal":{"name":"2020 IEEE Sensors","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Deep-Learning for Hand-Gesture Recognition with Simultaneous Thermal and Radar Sensors\",\"authors\":\"Sruthy Skaria, Da Huang, A. Al-Hourani, R. Evans, M. Lech\",\"doi\":\"10.1109/SENSORS47125.2020.9278683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a framework for integrating two different types of sensors for hand-gesture recognition using deep-learning. The two sensors utilize completely different approaches for detecting the signal, namely; an ultra-wideband (UWB) impulse radar sensor and a thermal sensor. For robust gesture classification two parallel paths are utilized, each employs a combination of a convolutional neural network (CNN) and a long short-term memory (LSTM) network on both the radar signal and the thermal signal. The classification results from the two paths are then fused to improve the overall detection probability. The two sensors compliment the capability of each other; while the UWB radar is accurate for radial movement and less accurate for lateral movement, the thermal sensor is vice-versa. Thus, we find that combining both sensors produces near perfect classification accuracy of 99 % for 14 different hand-gestures.\",\"PeriodicalId\":338240,\"journal\":{\"name\":\"2020 IEEE Sensors\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS47125.2020.9278683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47125.2020.9278683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在本文中,我们提出了一个框架,用于集成两种不同类型的传感器,用于使用深度学习进行手势识别。这两个传感器利用完全不同的方法来检测信号,即;一个超宽带脉冲雷达传感器和一个热传感器。为了实现稳健的手势分类,我们使用了两条并行路径,每条路径都结合了卷积神经网络(CNN)和长短期记忆(LSTM)网络,对雷达信号和热信号进行分类。然后将两条路径的分类结果融合以提高整体检测概率。这两个传感器的能力互补;而超宽带雷达是准确的径向运动和不太准确的横向运动,热传感器是相反的。因此,我们发现结合这两个传感器对14种不同的手势产生近乎完美的分类准确率,达到99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep-Learning for Hand-Gesture Recognition with Simultaneous Thermal and Radar Sensors
In this paper, we present a framework for integrating two different types of sensors for hand-gesture recognition using deep-learning. The two sensors utilize completely different approaches for detecting the signal, namely; an ultra-wideband (UWB) impulse radar sensor and a thermal sensor. For robust gesture classification two parallel paths are utilized, each employs a combination of a convolutional neural network (CNN) and a long short-term memory (LSTM) network on both the radar signal and the thermal signal. The classification results from the two paths are then fused to improve the overall detection probability. The two sensors compliment the capability of each other; while the UWB radar is accurate for radial movement and less accurate for lateral movement, the thermal sensor is vice-versa. Thus, we find that combining both sensors produces near perfect classification accuracy of 99 % for 14 different hand-gestures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quartz Crystal Microbalance Sensor Based on Peptide Anchored Single-Walled Carbon Nanotubes for Highly Selective TNT Explosive Detection BaTiO3 sensitive film enhancement for CO2 detection Comparable Data Evaluation Method for a Radio-Nuclear Sensor When Used on an UAV Reusable acoustic tweezers enable 2D patterning of microparticles in microchamber on a disposable silicon chip superstrate Optimizing Novel Inorganic Scintillation Detectors for Applications in Medical Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1