{"title":"钢棒交流漏磁检测原理及可靠性改进探讨","authors":"B. Hu","doi":"10.11648/J.AJPA.20190702.13","DOIUrl":null,"url":null,"abstract":"In this paper, the principle of ac magnetic flux leakage (referred to as MFL) detection is presented by analyzing the formation of ac magnetic flux leakage and how it is collected. It is found that ac excitation frequency is a very important equipment parameter for ac magnetic flux leakage detection of steel rod. High-frequency current not only stabilizes the penetration depth of ac magnetic field under the rod surface and leakage magnetic field of defects, but also improves the ability to detect defects and adapts to higher detection speed. It is concluded that the lift-off effect is the fundamental reason affecting the reliability of MFL detection of steel rod, and there is an inherent signal amplitude deviation from the irremovable probe bouncing on the surface of steel rod. Then, the factors that aggravate the lift-off effect are analyzed synthetically, and the corresponding countermeasures are put forward. It provides an effective basis for improving the test reliability and reasonably controls the quality risk of the rod.","PeriodicalId":329149,"journal":{"name":"American Journal of Physics and Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discussion on the Principle and Reliability Improvement of AC Magnetic Flux Leakage Detection of Steel Rod\",\"authors\":\"B. Hu\",\"doi\":\"10.11648/J.AJPA.20190702.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the principle of ac magnetic flux leakage (referred to as MFL) detection is presented by analyzing the formation of ac magnetic flux leakage and how it is collected. It is found that ac excitation frequency is a very important equipment parameter for ac magnetic flux leakage detection of steel rod. High-frequency current not only stabilizes the penetration depth of ac magnetic field under the rod surface and leakage magnetic field of defects, but also improves the ability to detect defects and adapts to higher detection speed. It is concluded that the lift-off effect is the fundamental reason affecting the reliability of MFL detection of steel rod, and there is an inherent signal amplitude deviation from the irremovable probe bouncing on the surface of steel rod. Then, the factors that aggravate the lift-off effect are analyzed synthetically, and the corresponding countermeasures are put forward. It provides an effective basis for improving the test reliability and reasonably controls the quality risk of the rod.\",\"PeriodicalId\":329149,\"journal\":{\"name\":\"American Journal of Physics and Applications\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Physics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.AJPA.20190702.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJPA.20190702.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discussion on the Principle and Reliability Improvement of AC Magnetic Flux Leakage Detection of Steel Rod
In this paper, the principle of ac magnetic flux leakage (referred to as MFL) detection is presented by analyzing the formation of ac magnetic flux leakage and how it is collected. It is found that ac excitation frequency is a very important equipment parameter for ac magnetic flux leakage detection of steel rod. High-frequency current not only stabilizes the penetration depth of ac magnetic field under the rod surface and leakage magnetic field of defects, but also improves the ability to detect defects and adapts to higher detection speed. It is concluded that the lift-off effect is the fundamental reason affecting the reliability of MFL detection of steel rod, and there is an inherent signal amplitude deviation from the irremovable probe bouncing on the surface of steel rod. Then, the factors that aggravate the lift-off effect are analyzed synthetically, and the corresponding countermeasures are put forward. It provides an effective basis for improving the test reliability and reasonably controls the quality risk of the rod.