大倾角航拍图像中目标定位算法研究

Yu Chen, Xinde Li, S. Ge
{"title":"大倾角航拍图像中目标定位算法研究","authors":"Yu Chen, Xinde Li, S. Ge","doi":"10.1109/ICARM52023.2021.9536160","DOIUrl":null,"url":null,"abstract":"Target positioning of a large inclination angle in aerial images is challenging for camera distortion, which makes it difficult to obtain a positioning model. Oblique images produce a larger positioning error if a traditional positioning algorithm is directly used to locate the target. To address this problem, this study uses a BP neural network to automatically calculate the high-accuracy positioning of the target. The location algorithm not only does not require camera calibration in advance but also eliminates the impact of camera distortion on target positioning. Through positioning experiments on the collected aerial dataset, the results demonstrate that the average positioning error of the target is about 1m, which has a high-precision positioning result and algorithm robustness.","PeriodicalId":367307,"journal":{"name":"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Research on the Algorithm of Target Location in Aerial Images under a Large Inclination Angle\",\"authors\":\"Yu Chen, Xinde Li, S. Ge\",\"doi\":\"10.1109/ICARM52023.2021.9536160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Target positioning of a large inclination angle in aerial images is challenging for camera distortion, which makes it difficult to obtain a positioning model. Oblique images produce a larger positioning error if a traditional positioning algorithm is directly used to locate the target. To address this problem, this study uses a BP neural network to automatically calculate the high-accuracy positioning of the target. The location algorithm not only does not require camera calibration in advance but also eliminates the impact of camera distortion on target positioning. Through positioning experiments on the collected aerial dataset, the results demonstrate that the average positioning error of the target is about 1m, which has a high-precision positioning result and algorithm robustness.\",\"PeriodicalId\":367307,\"journal\":{\"name\":\"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARM52023.2021.9536160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARM52023.2021.9536160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在航拍图像中,大倾角的目标定位由于相机畸变的存在,给定位模型的建立带来了困难。如果直接使用传统的定位算法对目标进行定位,斜向图像会产生较大的定位误差。为了解决这一问题,本研究使用BP神经网络自动计算目标的高精度定位。该定位算法不仅不需要事先对摄像机进行标定,而且消除了摄像机畸变对目标定位的影响。通过对采集的航空数据集进行定位实验,结果表明,目标的平均定位误差在1m左右,具有高精度的定位结果和算法的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on the Algorithm of Target Location in Aerial Images under a Large Inclination Angle
Target positioning of a large inclination angle in aerial images is challenging for camera distortion, which makes it difficult to obtain a positioning model. Oblique images produce a larger positioning error if a traditional positioning algorithm is directly used to locate the target. To address this problem, this study uses a BP neural network to automatically calculate the high-accuracy positioning of the target. The location algorithm not only does not require camera calibration in advance but also eliminates the impact of camera distortion on target positioning. Through positioning experiments on the collected aerial dataset, the results demonstrate that the average positioning error of the target is about 1m, which has a high-precision positioning result and algorithm robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-model Friction Disturbance Compensation of a Pan-tilt Based on MUAV for Aerial Remote Sensing Application Multi-Modal Attention Guided Real-Time Lane Detection Amphibious Robot with a Novel Composite Propulsion Mechanism Iterative Learning Control of Impedance Parameters for a Soft Exosuit Triple-step Nonlinear Controller with MLFNN for a Lower Limb Rehabilitation Robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1