几种组合预测对股票指数的影响

Weihong Wang, Shuangshuang Nie
{"title":"几种组合预测对股票指数的影响","authors":"Weihong Wang, Shuangshuang Nie","doi":"10.1109/FITME.2008.42","DOIUrl":null,"url":null,"abstract":"In order to evaluate the performance of several combining forecasts, the paper firstly uses three single forecasting methods, namely grey model(GM (1,1)), BP neural networks and support vector machines (SVM), to forecast the Shanghai Industrial Index, the Shanghai Commercial Index, the Shanghai Real Estate Index, the Shanghai Public Utilities Index. Then it uses optimal weight linear combining forecasts model, BP neural based combining forecasts model and SVM-based combining forecasts model to forecast the above indexes. Through evaluating the results of these forecasting methods, it is argued that choosing the method which has the best forecasting result as the combining forecasts model can greatly enhance the forecast effectiveness.","PeriodicalId":218182,"journal":{"name":"2008 International Seminar on Future Information Technology and Management Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"The Performance of Several Combining Forecasts for Stock Index\",\"authors\":\"Weihong Wang, Shuangshuang Nie\",\"doi\":\"10.1109/FITME.2008.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to evaluate the performance of several combining forecasts, the paper firstly uses three single forecasting methods, namely grey model(GM (1,1)), BP neural networks and support vector machines (SVM), to forecast the Shanghai Industrial Index, the Shanghai Commercial Index, the Shanghai Real Estate Index, the Shanghai Public Utilities Index. Then it uses optimal weight linear combining forecasts model, BP neural based combining forecasts model and SVM-based combining forecasts model to forecast the above indexes. Through evaluating the results of these forecasting methods, it is argued that choosing the method which has the best forecasting result as the combining forecasts model can greatly enhance the forecast effectiveness.\",\"PeriodicalId\":218182,\"journal\":{\"name\":\"2008 International Seminar on Future Information Technology and Management Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Seminar on Future Information Technology and Management Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FITME.2008.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Seminar on Future Information Technology and Management Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FITME.2008.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

为了评价几种组合预测的效果,本文首先采用灰色模型(GM(1,1))、BP神经网络和支持向量机(SVM)三种单一预测方法对上海工业指数、上海商业指数、上海房地产指数和上海公用事业指数进行预测。然后分别采用最优权重线性组合预测模型、基于BP神经的组合预测模型和基于支持向量机的组合预测模型对上述指标进行预测。通过对这些预测方法的效果进行评价,认为选择预测效果最好的方法作为组合预测模型,可以大大提高预测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Performance of Several Combining Forecasts for Stock Index
In order to evaluate the performance of several combining forecasts, the paper firstly uses three single forecasting methods, namely grey model(GM (1,1)), BP neural networks and support vector machines (SVM), to forecast the Shanghai Industrial Index, the Shanghai Commercial Index, the Shanghai Real Estate Index, the Shanghai Public Utilities Index. Then it uses optimal weight linear combining forecasts model, BP neural based combining forecasts model and SVM-based combining forecasts model to forecast the above indexes. Through evaluating the results of these forecasting methods, it is argued that choosing the method which has the best forecasting result as the combining forecasts model can greatly enhance the forecast effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Implementation of the Uncertain Resource Objects in the Network Resource Management A Distributed Platform Based on HBWSP&XML for Net Resources Sharing The Framework of Total Decision Support Based on Knowledge Management The Study on Spatial Data of Across-district Emergency Response Information Sharing System How to Identify Equity Market Timing Risk: Case Study of Ping an Insurance's Financing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1