基于局部感知和BSM的智能交通系统不当行为检测

Sohan Gyawali, Takayuki Shimizu, Hongsheng Lu, Michael Clifford, J. Kenney, Y. Qian
{"title":"基于局部感知和BSM的智能交通系统不当行为检测","authors":"Sohan Gyawali, Takayuki Shimizu, Hongsheng Lu, Michael Clifford, J. Kenney, Y. Qian","doi":"10.1109/VTC2022-Fall57202.2022.10012976","DOIUrl":null,"url":null,"abstract":"An intelligent transportation system aims to provide various traffic safety and navigation services, and mainly relies on local perception and vehicular communication technologies. However, the vehicular communication technologies can be a target of wide range of attacks including position falsification, Sybil and denial-of-service (DoS) attacks which can lead to disastrous traffic accidents and jams. As a viable solution, misbehavior detection systems can be used in vehicular networks. Different from other works, in this paper, we propose a misbehavior detection system that utilizes both local perception and basic safety messages (BSM). Our work shows the methodology for generating realistic vehicular network data sets that include both local perception and BSM. In addition, we compare and show that the propose scheme is better compared to the previous scheme utilizing only beacon information for accurately identifying misbehavior in intelligent transportation system.","PeriodicalId":326047,"journal":{"name":"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local perception and BSM based misbehavior detection in Intelligent Transportation System\",\"authors\":\"Sohan Gyawali, Takayuki Shimizu, Hongsheng Lu, Michael Clifford, J. Kenney, Y. Qian\",\"doi\":\"10.1109/VTC2022-Fall57202.2022.10012976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An intelligent transportation system aims to provide various traffic safety and navigation services, and mainly relies on local perception and vehicular communication technologies. However, the vehicular communication technologies can be a target of wide range of attacks including position falsification, Sybil and denial-of-service (DoS) attacks which can lead to disastrous traffic accidents and jams. As a viable solution, misbehavior detection systems can be used in vehicular networks. Different from other works, in this paper, we propose a misbehavior detection system that utilizes both local perception and basic safety messages (BSM). Our work shows the methodology for generating realistic vehicular network data sets that include both local perception and BSM. In addition, we compare and show that the propose scheme is better compared to the previous scheme utilizing only beacon information for accurately identifying misbehavior in intelligent transportation system.\",\"PeriodicalId\":326047,\"journal\":{\"name\":\"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTC2022-Fall57202.2022.10012976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTC2022-Fall57202.2022.10012976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

智能交通系统旨在提供各种交通安全和导航服务,主要依赖于本地感知和车辆通信技术。然而,车载通信技术可能成为各种攻击的目标,包括位置伪造、攻击和拒绝服务(DoS)攻击,这些攻击可能导致灾难性的交通事故和拥堵。作为一种可行的解决方案,不当行为检测系统可以用于车辆网络。与其他研究不同的是,在本文中,我们提出了一种利用局部感知和基本安全信息(BSM)的不当行为检测系统。我们的工作展示了生成真实的车辆网络数据集的方法,包括局部感知和BSM。此外,我们比较并表明,与仅使用信标信息的方案相比,所提出的方案更好地准确识别智能交通系统中的不当行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Local perception and BSM based misbehavior detection in Intelligent Transportation System
An intelligent transportation system aims to provide various traffic safety and navigation services, and mainly relies on local perception and vehicular communication technologies. However, the vehicular communication technologies can be a target of wide range of attacks including position falsification, Sybil and denial-of-service (DoS) attacks which can lead to disastrous traffic accidents and jams. As a viable solution, misbehavior detection systems can be used in vehicular networks. Different from other works, in this paper, we propose a misbehavior detection system that utilizes both local perception and basic safety messages (BSM). Our work shows the methodology for generating realistic vehicular network data sets that include both local perception and BSM. In addition, we compare and show that the propose scheme is better compared to the previous scheme utilizing only beacon information for accurately identifying misbehavior in intelligent transportation system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-Orthogonal Neighbor Election Random Access for Distributed 6G Wireless Networks Coverage Performance Analysis of Piggyback Mobile IoT in 5G Vehicular Networks Performance Comparison of Error-Control Schemes in Collaborative Multiple-Input Multiple-Output Systems Valuation-Aware Federated Learning: An Auction-Based Approach for User Selection Design of Robust LoS-MIMO Transmission in HAPS Feeder Link
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1