{"title":"利用非线性传输线的布拉格截止产生微波脉冲","authors":"K. Lyon, E. Kan","doi":"10.1109/MWSYM.2008.4633055","DOIUrl":null,"url":null,"abstract":"Nonlinear transmission lines (NLTL) have received considerable attention for their frequency conversion, fast pulse generation, and rise/falltime compression properties. Here we present a new mode of operation for the NLTL which uses falltime compression to generate short RF pulses near the Bragg cutoff frequency. While this phenomenon has been reported in circuit model simulations, we demonstrate, to our knowledge, its first experimental verification. We demonstrate control of the pulse center frequency using next-nearest neighbor coupling and examine the feasibility of MMIC implementation. Our resulting devices generate short microwave pulses suitable for short range wireless communication. The frequency conversion is non-harmonic and requires no active bias currents.","PeriodicalId":273767,"journal":{"name":"2008 IEEE MTT-S International Microwave Symposium Digest","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Microwave pulse generation using the Bragg cutoff of a nonlinear transmission line\",\"authors\":\"K. Lyon, E. Kan\",\"doi\":\"10.1109/MWSYM.2008.4633055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonlinear transmission lines (NLTL) have received considerable attention for their frequency conversion, fast pulse generation, and rise/falltime compression properties. Here we present a new mode of operation for the NLTL which uses falltime compression to generate short RF pulses near the Bragg cutoff frequency. While this phenomenon has been reported in circuit model simulations, we demonstrate, to our knowledge, its first experimental verification. We demonstrate control of the pulse center frequency using next-nearest neighbor coupling and examine the feasibility of MMIC implementation. Our resulting devices generate short microwave pulses suitable for short range wireless communication. The frequency conversion is non-harmonic and requires no active bias currents.\",\"PeriodicalId\":273767,\"journal\":{\"name\":\"2008 IEEE MTT-S International Microwave Symposium Digest\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE MTT-S International Microwave Symposium Digest\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.2008.4633055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE MTT-S International Microwave Symposium Digest","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2008.4633055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microwave pulse generation using the Bragg cutoff of a nonlinear transmission line
Nonlinear transmission lines (NLTL) have received considerable attention for their frequency conversion, fast pulse generation, and rise/falltime compression properties. Here we present a new mode of operation for the NLTL which uses falltime compression to generate short RF pulses near the Bragg cutoff frequency. While this phenomenon has been reported in circuit model simulations, we demonstrate, to our knowledge, its first experimental verification. We demonstrate control of the pulse center frequency using next-nearest neighbor coupling and examine the feasibility of MMIC implementation. Our resulting devices generate short microwave pulses suitable for short range wireless communication. The frequency conversion is non-harmonic and requires no active bias currents.