半马尔可夫链遍历时间分布的计算及其在Petri网上的应用

F. Hadziomerovic
{"title":"半马尔可夫链遍历时间分布的计算及其在Petri网上的应用","authors":"F. Hadziomerovic","doi":"10.1109/ICAT.2013.6684082","DOIUrl":null,"url":null,"abstract":"This paper shows how to obtain probability distribution of traversing time between initial and final states in Markov Chains underlying Petri Nets. The exact closed form solution is obtained for the negative exponential transitions (firing times) with or without one deterministic transition, and the approximate solution for the mix of negative exponential with more than one deterministic transitions. Then the known distribution enables to find the percentile estimates. We apply our method to obtain the percentile of a packet delay in the network. This approach can be applied to any performance tool which reduces to Markov chains, such as Finite State Machines as well as Queuing Networks.","PeriodicalId":348701,"journal":{"name":"2013 XXIV International Conference on Information, Communication and Automation Technologies (ICAT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculation of traversing time distributions in semi-Markov chains with application on Petri Nets\",\"authors\":\"F. Hadziomerovic\",\"doi\":\"10.1109/ICAT.2013.6684082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper shows how to obtain probability distribution of traversing time between initial and final states in Markov Chains underlying Petri Nets. The exact closed form solution is obtained for the negative exponential transitions (firing times) with or without one deterministic transition, and the approximate solution for the mix of negative exponential with more than one deterministic transitions. Then the known distribution enables to find the percentile estimates. We apply our method to obtain the percentile of a packet delay in the network. This approach can be applied to any performance tool which reduces to Markov chains, such as Finite State Machines as well as Queuing Networks.\",\"PeriodicalId\":348701,\"journal\":{\"name\":\"2013 XXIV International Conference on Information, Communication and Automation Technologies (ICAT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 XXIV International Conference on Information, Communication and Automation Technologies (ICAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAT.2013.6684082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 XXIV International Conference on Information, Communication and Automation Technologies (ICAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAT.2013.6684082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了Petri网基础上的马尔可夫链在初始状态和最终状态之间穿越时间的概率分布。得到了带或不带一个确定性跃迁的负指数跃迁(发射时间)的精确封闭解,以及带多个确定性跃迁的负指数混合的近似解。然后,已知分布可以找到百分位数估计值。我们应用我们的方法来获得网络中数据包延迟的百分位数。这种方法可以应用于任何简化为马尔可夫链的性能工具,例如有限状态机和排队网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Calculation of traversing time distributions in semi-Markov chains with application on Petri Nets
This paper shows how to obtain probability distribution of traversing time between initial and final states in Markov Chains underlying Petri Nets. The exact closed form solution is obtained for the negative exponential transitions (firing times) with or without one deterministic transition, and the approximate solution for the mix of negative exponential with more than one deterministic transitions. Then the known distribution enables to find the percentile estimates. We apply our method to obtain the percentile of a packet delay in the network. This approach can be applied to any performance tool which reduces to Markov chains, such as Finite State Machines as well as Queuing Networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamical compensation of bounded external impacts for yaw stabilisation system Output disturbance rejection using parallel model predictive control An algorithm for boost converter efficiency optimization Adaptive behavior-based control for robot navigation: A multi-robot case study Gradient based adaptive trajectory tracking control for mobile robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1