{"title":"利用可变刚度跑步机对步态中腿间协调的感觉运动机制进行综合分析:改进机器人辅助步态治疗的生理学见解","authors":"J. Skidmore, P. Artemiadis","doi":"10.1109/ICORR.2019.8779466","DOIUrl":null,"url":null,"abstract":"Rehabilitation robotics is an emerging field in which gait training has been largely automated allowing more intensive, repetitive motions which are important for facilitating recovery. However, there is no clear evidence that robot-assisted gait training is superior to conventional therapy. A limitation of current approaches to gait therapy is that they do not consider mechanisms of inter-leg coordination and how the sensory feedback from one leg affects the motion of the other leg. Instead they impose motion on the impaired limb. Recent research suggests that utilizing the coupling between limbs in stroke rehabilitation therapies could lead to improved functional outcome. Therefore, a fundamental understanding of underlying sensorimotor mechanisms of inter-leg coordination may facilitate improved interventions in gait therapy. This paper systematically explores and analyzes a sensorimotor mechanism of inter-leg coordination that is stimulated through sudden unilateral low-stiffness perturbations to the walking surface. The potential contribution of each sensory modality to the perception and response of the perturbation will be investigated. Additionally, the neural pathway that relays the sensory signal into the motor output will be described in order to fully characterize this sensorimotor mechanism of inter-leg coordination. This work provides physiological understanding of inter-leg coordination that will benefit robot-assisted gait therapies.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Comprehensive Analysis of Sensorimotor Mechanisms of Inter-Leg Coordination in Gait Using the Variable Stiffness Treadmill: Physiological Insights for Improved Robot-Assisted Gait Therapy\",\"authors\":\"J. Skidmore, P. Artemiadis\",\"doi\":\"10.1109/ICORR.2019.8779466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rehabilitation robotics is an emerging field in which gait training has been largely automated allowing more intensive, repetitive motions which are important for facilitating recovery. However, there is no clear evidence that robot-assisted gait training is superior to conventional therapy. A limitation of current approaches to gait therapy is that they do not consider mechanisms of inter-leg coordination and how the sensory feedback from one leg affects the motion of the other leg. Instead they impose motion on the impaired limb. Recent research suggests that utilizing the coupling between limbs in stroke rehabilitation therapies could lead to improved functional outcome. Therefore, a fundamental understanding of underlying sensorimotor mechanisms of inter-leg coordination may facilitate improved interventions in gait therapy. This paper systematically explores and analyzes a sensorimotor mechanism of inter-leg coordination that is stimulated through sudden unilateral low-stiffness perturbations to the walking surface. The potential contribution of each sensory modality to the perception and response of the perturbation will be investigated. Additionally, the neural pathway that relays the sensory signal into the motor output will be described in order to fully characterize this sensorimotor mechanism of inter-leg coordination. This work provides physiological understanding of inter-leg coordination that will benefit robot-assisted gait therapies.\",\"PeriodicalId\":130415,\"journal\":{\"name\":\"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR.2019.8779466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR.2019.8779466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Comprehensive Analysis of Sensorimotor Mechanisms of Inter-Leg Coordination in Gait Using the Variable Stiffness Treadmill: Physiological Insights for Improved Robot-Assisted Gait Therapy
Rehabilitation robotics is an emerging field in which gait training has been largely automated allowing more intensive, repetitive motions which are important for facilitating recovery. However, there is no clear evidence that robot-assisted gait training is superior to conventional therapy. A limitation of current approaches to gait therapy is that they do not consider mechanisms of inter-leg coordination and how the sensory feedback from one leg affects the motion of the other leg. Instead they impose motion on the impaired limb. Recent research suggests that utilizing the coupling between limbs in stroke rehabilitation therapies could lead to improved functional outcome. Therefore, a fundamental understanding of underlying sensorimotor mechanisms of inter-leg coordination may facilitate improved interventions in gait therapy. This paper systematically explores and analyzes a sensorimotor mechanism of inter-leg coordination that is stimulated through sudden unilateral low-stiffness perturbations to the walking surface. The potential contribution of each sensory modality to the perception and response of the perturbation will be investigated. Additionally, the neural pathway that relays the sensory signal into the motor output will be described in order to fully characterize this sensorimotor mechanism of inter-leg coordination. This work provides physiological understanding of inter-leg coordination that will benefit robot-assisted gait therapies.