A. Yoshida, K. Yoshimoto, M. Ohshima, K. Kodera, Y. Naka, H. Kanai, S. Kobayashi, S. Maeda, Phubes Jiravanichsakul, Katsutoshi Kobayashi, H. Aoyama
{"title":"定向自组装过程中周期性和非周期性图案边界处形态缺陷的控制","authors":"A. Yoshida, K. Yoshimoto, M. Ohshima, K. Kodera, Y. Naka, H. Kanai, S. Kobayashi, S. Maeda, Phubes Jiravanichsakul, Katsutoshi Kobayashi, H. Aoyama","doi":"10.1117/12.2218234","DOIUrl":null,"url":null,"abstract":"In this study, we investigated a directed self-assembly (DSA) flow that could include a non-periodic pattern (i.e., wide line) lying in between the periodic line/space patterns, in a relatively simple and inexpensive way. A symmetric poly(styrene-block-methyl methacrylate) (PS-b-PMMA) with the natural periodicity (L0) of 30 nm was employed here. Our DSA flow has two key features. First, we used a hybrid approach that combined chemoepitaxy and graphoepitaxy methods to generate PMMA-attractive pinning guide patterns directly from ArF resist. Second, we attempted to utilize both the perpendicular lamellae in the periodic regions and the horizontal lamellae on the non-periodic pattern as an etch template. The advantage of this process will be a reduction of the number of lithographic processes, whereas the challenge is how to control the mixed morphologies at the boundary between the periodic and non-periodic regions. Our preliminary results from simulations and experiments showed that, in order to generate the horizontal lamellae on the non-periodic pattern, the PS-b-PMMA thickness on top of the non-periodic guide pattern should roughly match to ~1 L0, and the width of the non-periodic pattern should be larger than ~3-4 L0. In addition, the space between the periodic and non-periodic regions was found to be critical and it should be basically equal to the space between the guiding pins in the periodic regions (~75 nm) to minimize the formation of fingerprint morphology at the boundaries.","PeriodicalId":193904,"journal":{"name":"SPIE Advanced Lithography","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Control of morphological defects at the boundary between the periodic and non-periodic patterns in directed self-assembly process\",\"authors\":\"A. Yoshida, K. Yoshimoto, M. Ohshima, K. Kodera, Y. Naka, H. Kanai, S. Kobayashi, S. Maeda, Phubes Jiravanichsakul, Katsutoshi Kobayashi, H. Aoyama\",\"doi\":\"10.1117/12.2218234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we investigated a directed self-assembly (DSA) flow that could include a non-periodic pattern (i.e., wide line) lying in between the periodic line/space patterns, in a relatively simple and inexpensive way. A symmetric poly(styrene-block-methyl methacrylate) (PS-b-PMMA) with the natural periodicity (L0) of 30 nm was employed here. Our DSA flow has two key features. First, we used a hybrid approach that combined chemoepitaxy and graphoepitaxy methods to generate PMMA-attractive pinning guide patterns directly from ArF resist. Second, we attempted to utilize both the perpendicular lamellae in the periodic regions and the horizontal lamellae on the non-periodic pattern as an etch template. The advantage of this process will be a reduction of the number of lithographic processes, whereas the challenge is how to control the mixed morphologies at the boundary between the periodic and non-periodic regions. Our preliminary results from simulations and experiments showed that, in order to generate the horizontal lamellae on the non-periodic pattern, the PS-b-PMMA thickness on top of the non-periodic guide pattern should roughly match to ~1 L0, and the width of the non-periodic pattern should be larger than ~3-4 L0. In addition, the space between the periodic and non-periodic regions was found to be critical and it should be basically equal to the space between the guiding pins in the periodic regions (~75 nm) to minimize the formation of fingerprint morphology at the boundaries.\",\"PeriodicalId\":193904,\"journal\":{\"name\":\"SPIE Advanced Lithography\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Advanced Lithography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2218234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Advanced Lithography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2218234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Control of morphological defects at the boundary between the periodic and non-periodic patterns in directed self-assembly process
In this study, we investigated a directed self-assembly (DSA) flow that could include a non-periodic pattern (i.e., wide line) lying in between the periodic line/space patterns, in a relatively simple and inexpensive way. A symmetric poly(styrene-block-methyl methacrylate) (PS-b-PMMA) with the natural periodicity (L0) of 30 nm was employed here. Our DSA flow has two key features. First, we used a hybrid approach that combined chemoepitaxy and graphoepitaxy methods to generate PMMA-attractive pinning guide patterns directly from ArF resist. Second, we attempted to utilize both the perpendicular lamellae in the periodic regions and the horizontal lamellae on the non-periodic pattern as an etch template. The advantage of this process will be a reduction of the number of lithographic processes, whereas the challenge is how to control the mixed morphologies at the boundary between the periodic and non-periodic regions. Our preliminary results from simulations and experiments showed that, in order to generate the horizontal lamellae on the non-periodic pattern, the PS-b-PMMA thickness on top of the non-periodic guide pattern should roughly match to ~1 L0, and the width of the non-periodic pattern should be larger than ~3-4 L0. In addition, the space between the periodic and non-periodic regions was found to be critical and it should be basically equal to the space between the guiding pins in the periodic regions (~75 nm) to minimize the formation of fingerprint morphology at the boundaries.