探索OpenCL管道在云fpga上隐藏内存延迟的效率

Arnab A. Purkayastha, S. Raghavendran, Jhanani Thiagarajan, H. Tabkhi
{"title":"探索OpenCL管道在云fpga上隐藏内存延迟的效率","authors":"Arnab A. Purkayastha, S. Raghavendran, Jhanani Thiagarajan, H. Tabkhi","doi":"10.1109/HPEC.2019.8916236","DOIUrl":null,"url":null,"abstract":"OpenCL programming ability combined with OpenCL High-Level Synthesis (OpenCL-HLS) tools have made tremendous improvements in the reconfigurable computing field. FPGAs inherent pipelined parallelism capability provides not only faster execution times but also power-efficient solutions when executing massively parallel applications. A major execution bottleneck affecting FPGA performance is the high number of memory stalls exposed to pipelined data-path that hinders the benefits of data-path customization.This paper explores the efficiency of “OpenCL Pipe” to hide memory access latency on cloud FPGAs by decoupling memory access from computation. The Pipe semantic is leveraged to split OpenCL kernels into “read”, “compute” and “write back” sub-kernels which work concurrently to overlap the computation of current threads with the memory access of future threads. For evaluation, we use a mix of seven massively parallel high-performance applications from the Rodinia suite vs. 3.1. All our tests are conducted on the Xilinx VU9FP FPGA platform of Amazon cloud-based AWS EC2 F1 instance. On average, we observe 5.2x speedup with a 2.2x increase in memory bandwidth utilization with about 2.5x increase in FPGA resource utilization over the baseline synthesis (Xilinx OpenCL-HLS).11This work has been funded and supported by the Xilinx University Program (XUP)..","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Exploring the Efficiency of OpenCL Pipe for Hiding Memory Latency on Cloud FPGAs\",\"authors\":\"Arnab A. Purkayastha, S. Raghavendran, Jhanani Thiagarajan, H. Tabkhi\",\"doi\":\"10.1109/HPEC.2019.8916236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"OpenCL programming ability combined with OpenCL High-Level Synthesis (OpenCL-HLS) tools have made tremendous improvements in the reconfigurable computing field. FPGAs inherent pipelined parallelism capability provides not only faster execution times but also power-efficient solutions when executing massively parallel applications. A major execution bottleneck affecting FPGA performance is the high number of memory stalls exposed to pipelined data-path that hinders the benefits of data-path customization.This paper explores the efficiency of “OpenCL Pipe” to hide memory access latency on cloud FPGAs by decoupling memory access from computation. The Pipe semantic is leveraged to split OpenCL kernels into “read”, “compute” and “write back” sub-kernels which work concurrently to overlap the computation of current threads with the memory access of future threads. For evaluation, we use a mix of seven massively parallel high-performance applications from the Rodinia suite vs. 3.1. All our tests are conducted on the Xilinx VU9FP FPGA platform of Amazon cloud-based AWS EC2 F1 instance. On average, we observe 5.2x speedup with a 2.2x increase in memory bandwidth utilization with about 2.5x increase in FPGA resource utilization over the baseline synthesis (Xilinx OpenCL-HLS).11This work has been funded and supported by the Xilinx University Program (XUP)..\",\"PeriodicalId\":184253,\"journal\":{\"name\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2019.8916236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

OpenCL编程能力与OpenCL高级综合(OpenCL- hls)工具的结合在可重构计算领域取得了巨大的进步。fpga固有的流水线并行能力不仅提供了更快的执行时间,而且在执行大规模并行应用程序时提供了节能的解决方案。影响FPGA性能的一个主要执行瓶颈是暴露给流水线数据路径的大量内存中断,这阻碍了数据路径定制的好处。本文探讨了“OpenCL管道”通过将内存访问与计算解耦来隐藏云fpga上内存访问延迟的效率。Pipe语义被用来将OpenCL内核拆分为“读”、“计算”和“回写”子内核,这些子内核同时工作,使当前线程的计算与未来线程的内存访问重叠。为了进行评估,我们使用了来自Rodinia套件和3.1的七个大规模并行高性能应用程序的组合。我们所有的测试都是在基于亚马逊云的AWS EC2 F1实例的Xilinx VU9FP FPGA平台上进行的。平均而言,我们观察到与基线合成(Xilinx OpenCL-HLS)相比,速度提高了5.2倍,内存带宽利用率提高了2.2倍,FPGA资源利用率提高了2.5倍。这项工作得到了赛灵思大学项目(XUP)的资助和支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the Efficiency of OpenCL Pipe for Hiding Memory Latency on Cloud FPGAs
OpenCL programming ability combined with OpenCL High-Level Synthesis (OpenCL-HLS) tools have made tremendous improvements in the reconfigurable computing field. FPGAs inherent pipelined parallelism capability provides not only faster execution times but also power-efficient solutions when executing massively parallel applications. A major execution bottleneck affecting FPGA performance is the high number of memory stalls exposed to pipelined data-path that hinders the benefits of data-path customization.This paper explores the efficiency of “OpenCL Pipe” to hide memory access latency on cloud FPGAs by decoupling memory access from computation. The Pipe semantic is leveraged to split OpenCL kernels into “read”, “compute” and “write back” sub-kernels which work concurrently to overlap the computation of current threads with the memory access of future threads. For evaluation, we use a mix of seven massively parallel high-performance applications from the Rodinia suite vs. 3.1. All our tests are conducted on the Xilinx VU9FP FPGA platform of Amazon cloud-based AWS EC2 F1 instance. On average, we observe 5.2x speedup with a 2.2x increase in memory bandwidth utilization with about 2.5x increase in FPGA resource utilization over the baseline synthesis (Xilinx OpenCL-HLS).11This work has been funded and supported by the Xilinx University Program (XUP)..
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[HPEC 2019 Copyright notice] Concurrent Katz Centrality for Streaming Graphs Cyber Baselining: Statistical properties of cyber time series and the search for stability Emerging Applications of 3D Integration and Approximate Computing in High-Performance Computing Systems: Unique Security Vulnerabilities Target-based Resource Allocation for Deep Learning Applications in a Multi-tenancy System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1